Patents by Inventor Reinhold Wimberger-Friedl

Reinhold Wimberger-Friedl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150093750
    Abstract: The invention relates to a processing device (100) and a method for processing a medium in a processing chamber (121). The processing comprises the addition of magnetic particles (M) to the medium and the mixing of the medium by manipulating said magnetic particles with a time-variable magnetic field (B), particularly a partially oscillating or rotating field. The magnetic field (B) may be generated with a multipole magnetic field generator (110) comprising four subunits (111A,111B), each having a core (113A,113B) with a surrounding coil (112A,112B) and with a top surface (114A,114B), wherein all top surfaces of said subunits are preferably arranged in the same plane and wherein all cores are substantially parallel to each other.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 2, 2015
    Inventors: Mikhail Mikhaylovich Ovsyanko, Pieter Jan Van Der Zaag, Harma Martine Feitsma, Reinhold Wimberger-Friedl, Theodorus Antonius Johannes Löring, Martinus Johannes Van Zelst
  • Patent number: 8987684
    Abstract: A detection system, comprising: a radiation source (24) for providing input radiation; a radiation focusing arrangement (26) for providing the input radiation to an analysis region of a sample (20);—a radiation collection (26) arrangement for collecting output radiation from the analysis region of the sample resulting from interaction of the input radiation with the sample; a radiation detector (28) for detecting the collected output radiation; operating means (40,50,60) for operating the detection device in a first detection mode and a second detection mode, wherein in the first detection mode the analysis has a first size and/or shape and wherein in the second detection mode the analysis region has a second size and/or shape that is different from the first size and/or shape.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: March 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Reinhold Wimberger-Friedl, Marius Iosif Boamfa, Erik Martinus Hubertus Petrus Van Dijk
  • Publication number: 20150079585
    Abstract: The present invention relates to DNA sequencing with reagent cycling on the wiregrid. The sequencing approach suggested with which allows to use a single fluid with no washing steps. Based on strong optical confinement and of excitation light and of cleavage light, the sequencing reaction can be read-out without washing the surface. Stepwise sequencing is achieved by using nucleotides with optically cleavable blocking moietys. After read-out the built in nucleotide is deblocked by cleavage light through the same substrate. This ensures that only bound nucleotides will be unblocked.
    Type: Application
    Filed: January 9, 2013
    Publication date: March 19, 2015
    Inventors: Reinhold Wimberger-Friedl, Johan Lub, Pieter Jan Van Der Zaag
  • Patent number: 8916111
    Abstract: The invention relates to a miniaturized fluid container with microchannels (11, 12) which are bordered by ridges (13, 14), wherein the crests of the ridges (13, 14) are glued to a cover plate (20). Additional stability may be achieved by distributing glue (33) in cavities between the microchannels (11, 12), the spreading of said glue being driven by capillary forces.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 23, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Reinhold Wimberger-Friedl, Christiane Witz, Esther A. W. Janssen, Bernardus Jacobus Johannes Van Iersel, Bart Van Nunen, Marinus Bernardus Olde Riekerink
  • Publication number: 20140302529
    Abstract: A filter element (200) and a method are disclosed for retaining particles of a medium, for example (rare) cells of blood. The filter element (200) comprises at least one opening (220) that (i) has an elongate cross section and/or (ii) has a cross section that decreases in flow direction (x) and/or (iii) is bordered by a transparent wall. Preferably, the filter element (100, 200, 300) is provided with a plurality of elongate openings (220) of stepwise decreasing cross section that are arranged on a common transparent slide. Thus high flow rates can be realized throughout the filtering process, and the retained particles are immediately ready for visual inspection without a need for a further transfer.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 9, 2014
    Inventors: Reinhold Wimberger-Friedl, Anja Van De Stolpe, Freek Van Hemert
  • Publication number: 20140295420
    Abstract: The invention relates to means for processing a sample fluid containing different components, particularly magnetic particles (M) and targets (cells) (C+M) labeled with magnetic particles. A processing device (100) according to the invention comprises a container (110) with a first compartment (120) that can be filled with a sample fluid and that is separated from a second compartment (130) by a filtering element (140). The filtering element (140) allows the passage of only at least one selected component (M) of the sample. Moreover, an optical surface (150), for example a microscopy slide, is provided in one (120) of the compartments. Components (C+M) of the sample that are in this compartment (120) collect on the optical surface (150). The migration of sample components (M, C+M) is preferably assisted by magnetic fields (B1, B2).
    Type: Application
    Filed: June 14, 2012
    Publication date: October 2, 2014
    Inventors: Mikhail Mikhaylovich Ovsyanko, Freek Van Hemert, Menno Willem Jose Prins, Anja Van De Stolpe, Reinhold Wimberger Friedl
  • Patent number: 8828740
    Abstract: A sensor device (15) for detecting magnetic particles (13) has a binding surface (40) with binding sites thereon and includes at least one sensor element (23) for detecting the presence of magnetic particles (13), an element or elements for attracting magnetic structures having at least one magnetic particle (13) toward and onto the binding surface (40) of the sensor device (15), and an element or elements for re-arranging and randomizing the position of individual magnetic particles (13) with respect to the binding sites on the binding surface (40) to give binding sites on all individual particles (13) a substantial probability to have a contact time with binding sites on the binding surface (40). With such sensor device (15), the speed of detection of target molecules in a fluid is enhanced.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: September 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Rachel Estelle Thilwind, Menno Willem Jose Prins, Mischa Megens, Reinhold Wimberger-Friedl
  • Patent number: 8686376
    Abstract: A system for detecting a plurality of analytes in a sample includes an aperture array and a lens array for generating and focusing a plurality of excitation sub-beams on different sub-regions of a substrate. These sub-regions can be provided with different binding sites for binding different analytes in the sample. By detecting the different luminescent responses in a detector, the presence or amount of different analytes can be determined simultaneously. Alternatively or in addition, collection of the luminescence radiation can be performed using the lens array for directly collecting the luminescence response and for guiding the collected luminescence response to corresponding apertures. The excitation sub-beams may be focused at the side of the substrate opposite of the lens array, and an immersion fluid is provided between the lens array and the substrate to increase the collection efficiency of the luminescence radiation.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: April 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Reinhold Wimberger-Friedl, Peter Dirksen, Marius Iosif Boamfa, Erik Martinus Hubertus Petrus Van Dijk
  • Publication number: 20140087955
    Abstract: The present invention relates a device for the efficient binding of nucleic acids on a microarray, comprising a reaction zone comprising a microarray, and a capture zone comprising a porous membrane substrate, wherein the capture zone is capable of specifically capturing sense strands of target molecules, whereas complementary antisense strands are captured in the reaction zone, or vice versa. The invention further envisages temperature regulating units in the device allowing to bring or keep the capture at a temperature not allowing hybridizing or binding of nucleic acid(s) to the capture molecules or to a temperature suitable for nucleic acid hybridization.
    Type: Application
    Filed: May 23, 2012
    Publication date: March 27, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Reinhold Wimberger Friedl, Eva Servoli
  • Publication number: 20140017687
    Abstract: The present invention relates to a method for performing molecular reactions in a device comprising the steps of (a) introducing one or more reagent solution(s) and an immiscible intermediate fluid into the device, wherein the device comprises a substrate, on which chemically or biochemically recognizable entities are immobilized; (b) performing molecular reactions between the immobilized chemically or biochemically recognizable entities and the reagent solution(s); or on the immobilized chemically or biochemically recognizable entities in the presence of the reagent solution(s); (c) displacing the reagent solution(s) present on the substrate by the immiscible intermediate fluid; (d) separating the immiscible intermediate fluid and the reagent solution(s); and reusing the reagent solution(s) and/or immiscible intermediate fluid for one or more repetitions of steps (a) to (e).
    Type: Application
    Filed: March 20, 2012
    Publication date: January 16, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Reinhold Wimberger-Friedl, Pieter Jan Van Der Zaag, Eva Servoli
  • Patent number: 8618508
    Abstract: A detection system combining an excitation radiation source providing excitation radiation to an analysis region of a sample within a substrate having a detection surface, a detector for detecting radiation collected from the analysis region comprising the detection surface of the sample resulting from the excitation, and a magnet arrangement beneath the analysis region of the sample, and stationary with respect to the excitation radiation source and light coupling arrangement, for attracting magnetic beads within the sample to the substrate surface. The detection radiation is collected from the detection surface of the substrate to give an enhanced surface specificity.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 31, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Reinhold Wimberger-Friedl, Jeroen Hans Nieuwenhuis, Johannes Joseph Hubertina Barbara Schleipen
  • Publication number: 20130299015
    Abstract: The invention relates to a micro valve for use in a biosensor, a micro fluidic device, use of such a device, and a micro fluidic element. Biosensors are used for detection of molecules and/or ions, such as protein, drug, DNA, RNA, hormone, glucose, insulin, enzyme, fungus, bacterium, etc., in a biological sample. The sensor can be used for diagnostic application, but for instance also drugs, either therapeutic or abuse, may be detected in for instance blood, urine and saliva.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 14, 2013
    Inventors: Roel Penterman, Johannes Van Eemeren, Reinhold Wimberger-Friedl, Henrik Van Amerongen
  • Patent number: 8475736
    Abstract: The present invention provides a microfluidic device, for instance for molecular sieving or for detecting a target substance in a sample fluid. The device comprises a first substrate (120) having a substantially flat first surface that is provided with first recesses (124), and a second substrate (128) having a substantially flat second surface that is provided with second recesses (130). At least some of the first recesses are filled with a porous material (114). Alternate first recesses and second recesses form a meandering channel for a sample fluid. The second recesses may be filled with a further porous material. In an embodiment, a capture substance for binding a target substance is arranged in or on the porous material.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 2, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Reinhold Wimberger-Friedl, Roel Penterman, Ralph Kurt, Emiel Peeters
  • Publication number: 20120270332
    Abstract: The invention relates to means for extracting magnetic particles (M) from a sample (S). The sample (S) is arranged adjacent to a liquid carrier (C), which is immiscible with it, in a configuration stable under the influence of gravity, and the magnetic particles (M) are moved by a magnetic field (B) from the sample (S) into the carrier (C). Preferably, the magnetic particles (M) are non-wetting with respect to the carrier (C) and will therefore form agglomerates in the carrier (C).
    Type: Application
    Filed: September 27, 2010
    Publication date: October 25, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Reinhold Wimberger-Friedl, Remco Christiaan Den Dulk
  • Publication number: 20120266986
    Abstract: A microfluidic cartridge for placement onto a parallel pneumatic interface plate of a pneumatic instrument is provided. The cartridge includes a three dimensional fluid channel, in which a fluid is to be transported, a flexible membrane that spans a plane and is part of an outer surface of the cartridge. The three dimensional fluid channel is spatially defined in three dimensions by internal walls of the cartridge and by the flexible membrane. The flexible membrane is in a ground state, when no pressure or vacuum is applied to the flexible membrane. However, the flexible membrane is pneumatically deflectable from the ground state perpendicular to the plane of the flexible membrane in two directions when the cartridge is placed onto the parallel pneumatic interface plate.
    Type: Application
    Filed: October 6, 2010
    Publication date: October 25, 2012
    Applicant: BIOCARTIS SA
    Inventors: Reinhold Wimberger-Friedl, Roel Penterman, Hendrik Halling Van Amerongen, Theodorus Antonius Johannes Loring, Martijn Jochem Van Uden
  • Publication number: 20120225446
    Abstract: Apparatus for producing thin layers of a fluid sample for analysis, has a two dimensional array of analysis chambers (45), and a branching pattern of entry channels (25) coupled to the array to enable the analysis chambers to be filled in parallel. The analysis chambers are planar with a height less than that of the entry channels so as to produce the thin layers when filled with the fluid sample. The array enables more spacers between chambers in a given area, so that variations in height of the chambers can be reduced, while still enabling fast filling of the chambers. The analysis chambers can be suitable for capillary filling by a specified fluid sample such as blood. A pattern of exit channels (35) can be coupled to the array. The entry and exit channels can form comb patterns, fingers of the comb patterns being interdigitated, and the analysis chambers being arranged between the interdigitated fingers of the comb patterns.
    Type: Application
    Filed: April 9, 2010
    Publication date: September 6, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Reinhold Wimberger-Friedl, Nicolaas Petrus Willard, Ivo Godfried Jozef Camps, Markus Laubscher, Emiel Peeters, Oana Mihaela Piciu
  • Publication number: 20120165219
    Abstract: The present invention relates to a device for the specific selection of target molecules, comprising: (a) at least one reaction zone comprising a microarray, wherein the microarray comprises a substrate, on which one or more species of capture molecules are immobilized, comprising one or more temperature control and/or regulating units for controlling and/or regulating the temperature within the zone; (b) at least one non-reaction zone comprising one or more temperature control and/or regulating units for controlling and/or regulating the temperature within the zone, which is in fluid connection with the reaction zone; and (c) at least one transportation means capable of generating and/or regulating a fluid flow between said reaction zone (a) and said non-reaction zone comprising one or more temperature control and/or regulating units (b).
    Type: Application
    Filed: August 26, 2010
    Publication date: June 28, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Pieter Jan Van Der Zaag, Harma Feitsma, Jacob Marinus Jan Den Toonder, Reinhold Wimberger-Friedl
  • Publication number: 20120156765
    Abstract: The invention relates to a fluid filtering device comprising a filter (2) for filtering a fluid and a substrate (3) comprising a collecting structure (4) for collecting the filtered fluid from the filter (2). An adhesive (5) holds the filter (2) in place with respect to the collecting structure (4). The filter (2), the substrate (3) with the collecting structure (4) and the adhesive (5) are arranged such that the collecting structure (4) contacts the filter (2) and the filter (2) is attached to the substrate (3) by the adhesive (5). The collecting structure is very close to the filter and the adhesive ensures that the collecting structure remains very close to the filter. The filtered fluid can therefore be collected very efficiently and very fast. The fluid filtering device is preferentially used for filtering blood in a biosensing device.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 21, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Reinhold Wimberger-Friedl, Jacobus Hermanus Maria Neijzen, Joost Hubert Maas
  • Publication number: 20120115246
    Abstract: The invention relates to a microfluidic device for performing detection of a substance in a liquid sample, wherein a cavity (24) is formed above a sensor surface area (22) of a sensor (18), said cavity (24) extending at the first side of a base plate (10) from a first area (32), where the cavity overlaps a first lateral channel part (30), to a second area (34), where the cavity overlaps a second lateral channel part (36); the second lateral channel part (36) comprising a lateral channel part formed by a porous capillary suction structure (13). The cavity (24) forms a flow path (42) from the first lateral channel part (30) along the sensor surface area (22) to the second lateral channel part (36); further, the invention relates to a method of detecting a target molecule in a liquid sample.
    Type: Application
    Filed: April 9, 2010
    Publication date: May 10, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Reinhold Wimberger-Friedl, Christiane Rossetta Maria De Witz
  • Publication number: 20120100630
    Abstract: The invention relates to a micro fluidics system (1) comprising: a closed, expandable volume (35) for mixing a fluid; a flexible membrane (40) for allowing mixing in the closed, expandable volume (35), characterized in that the micro fluidics system (1) further comprises: a surface (5) comprising at least one channel (20, 20a, 20b, 20c, 20d) for fluidically coupling a first side (10) of the surface (5) to the closed, expandable volume (35) on a second side (15) of the surface (5), the channel (20, 20a, 20b, 20c, 20d) comprising a first channel opening (25) fluidically coupling the first side (10) of the surface (5) to the channel (20, 20a, 20b, 20c, 20d) and a second channel opening (30) fluidically coupling the channel (20, 20a, 20b, 20c, 20d) to the closed, expandable volume (35), the expandable volume (35) being defined by the flexible membrane (40) closing the second channel opening (30) when there is no fluid in the expandable volume (35).
    Type: Application
    Filed: April 16, 2010
    Publication date: April 26, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Reinhold Wimberger-Friedl, Ronald Cornelis De Gier, Peter Hermanus Bouma