Patents by Inventor Ren-Hua Jin

Ren-Hua Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170275179
    Abstract: A method for producing a chiral metal oxide structure, involves a sol-gel step of allowing a transition metal compound having a bi- or higher dentate chelate ligand to act on a chiral supramolecular crystal of an acid-base complex containing a polymer having a linear polyethyleneimine skeleton and a chiral dicarboxylic acid compound having two carboxyl groups and four or more carbon atoms to form a metal oxide layer on a surface of the chiral supramolecular crystal; and a calcination step of thermally decomposing the organic chiral supramolecular crystal after the sol-gel step to generate a transition metal oxide structure composed of the metal oxide layer prepared with the supramolecular crystal as a template.
    Type: Application
    Filed: June 13, 2017
    Publication date: September 28, 2017
    Inventors: Ren-Hua Jin, Hiroyuki Matsukizono
  • Patent number: 9701545
    Abstract: A method for producing a chiral metal oxide structure, involves a sol-gel step of allowing a transition metal compound having a bi- or higher dentate chelate ligand to act on a chiral supramolecular crystal of an acid-base complex containing a polymer having a linear polyethyleneimine skeleton and a chiral dicarboxylic acid compound having two carboxyl groups and four or more carbon atoms to form a metal oxide layer on a surface of the chiral supramolecular crystal; and a calcination step of thermally decomposing the organic chiral supramolecular crystal after the sol-gel step to generate a transition metal oxide structure composed of the metal oxide layer prepared with the supramolecular crystal as a template.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: July 11, 2017
    Assignee: Kanagawa University
    Inventors: Ren-Hua Jin, Hiroyuki Matsukizono
  • Publication number: 20150291440
    Abstract: A method for producing a chiral metal oxide structure, involves a sol-gel step of allowing a transition metal compound having a bi- or higher dentate chelate ligand to act on a chiral supramolecular crystal of an acid-base complex containing a polymer having a linear polyethyleneimine skeleton and a chiral dicarboxylic acid compound having two carboxyl groups and four or more carbon atoms to form a metal oxide layer on a surface of the chiral supramolecular crystal; and a calcination step of thermally decomposing the organic chiral supramolecular crystal after the sol-gel step to generate a transition metal oxide structure composed of the metal oxide layer prepared with the supramolecular crystal as a template.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 15, 2015
    Inventors: Ren-Hua Jin, Hiroyuki Matsukizono
  • Patent number: 8618232
    Abstract: There are provided an infrared absorbing thin film that efficiently absorbs infrared rays and has good versatility by controlling the absorption intensity of titanium oxide in an infrared region and a method for producing the infrared absorbing thin film. The infrared absorbing thin film containing a rutile-type titanium oxide crystal.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 31, 2013
    Assignees: DIC Corporation, Kawamura Institute of Chemical Research
    Inventors: Ren-Hua Jin, Pei-Xin Zhu
  • Patent number: 8530559
    Abstract: Provided is a composite including copper nanoparticles or copper(I) oxide nanoparticles and a thioether-containing organic compound represented by X(OCH2CHR1)nOCH2CH(OH)CH2SZ [X represents an alkyl group; R1 represents a hydrogen atom or a methyl group; n represents an integer of 2 to 100; R1 is independent between repeating units and may be the same or different; and Z represents an alkyl group, an allyl group, an aryl group, an arylalkyl group, —R2—OH, —R2—NHR3, or —R2—(COR4)m (where R2 represents a saturated hydrocarbon group; R3 represents a hydrogen atom, an acyl group, an alkoxycarbonyl group, or a benzyloxycarbonyl group; R4 represents a hydroxy group, an alkyl group, or an alkoxy group; and m represents 1 to 3)].
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 10, 2013
    Assignee: DIC Corporation
    Inventors: Yoshiyuki Sano, Ren-Hua Jin, Kaori Kawamura, Masafumi Uota
  • Patent number: 8486494
    Abstract: An organic/inorganic composite coating film comprising an inorganic material as a matrix and an organic material combined therewith. The coating film has a regular hollow structure therein, and the coating film surface has a rugged pattern with semispherical protrusions. Also provided is a large-area structural color film obtained by burning the composite coating film. The organic/inorganic composite coating film is obtained by applying an aqueous coating composition comprising a metal alkoxide, an aqueous dispersion of monodisperse polymer particles, and an acid catalyst to a substrate and curing the coating composition. Burning the organic/inorganic composite coating film gives the structural color film.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 16, 2013
    Assignees: Kawamura Institute of Chemical Research, DIC Corporation
    Inventors: Norimasa Fukazawa, Ren-Hua Jin
  • Publication number: 20130095320
    Abstract: Provided is a composite including copper nanoparticles or copper(I) oxide nanoparticles and a thioether-containing organic compound represented by X(OCH2CHR1)nOCH2CH(OH)CH2SZ [X represents an alkyl group; R1 represents a hydrogen atom or a methyl group; n represents an integer of 2 to 100; R1 is independent between repeating units and may be the same or different; and Z represents an alkyl group, an allyl group, an aryl group, an arylalkyl group, —R2—OH, —R2—NHR3, or —R2—(COR4)m (where R2 represents a saturated hydrocarbon group; R3 represents a hydrogen atom, an acyl group, an alkoxycarbonyl group, or a benzyloxycarbonyl group; R4 represents a hydroxy group, an alkyl group, or an alkoxy group; and m represents 1 to 3)].
    Type: Application
    Filed: February 28, 2011
    Publication date: April 18, 2013
    Applicant: DIC CORPORATION
    Inventors: Yoshiyuki Sano, Ren-Hua Jin, Kaori Kawamura, Masafumi Uota
  • Patent number: 8388870
    Abstract: Provided are a composite of nanoparticles of a metal such as gold, silver, a platinum metal, or copper, and a polymer, the composite allowing formation of a metal film having a sufficiently low resistivity in terms of practicality simply by drying at room temperature without requiring any special heating-baking step or any step of removing a protective agent with a solvent; a dispersion liquid of the composite; methods for producing the foregoing; and a plastic substrate formed from the dispersion liquid. The composite comprises a (meth)acrylic-based copolymer having, as side chains, a polyethylene glycol chain and a phosphate residue represented by —OP(O)(OH)2 and having, at at least one end of the molecular chain, —SR (where R represents an alkyl group or the like).
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: March 5, 2013
    Assignee: DIC Corporation
    Inventors: Yoshiyuki Sano, Nobuhiro Sekine, Ren-Hua Jin, Hiroshi Yonehara, Masafumi Uota
  • Publication number: 20130040129
    Abstract: There are provided an infrared absorbing thin film that efficiently absorbs infrared rays and has good versatility by controlling the absorption intensity of titanium oxide in an infrared region and a method for producing the infrared absorbing thin film. The infrared absorbing thin film containing a rutile-type titanium oxide crystal can be produced through a step of dispersing or dissolving a complex of an amino group-containing basic polymer and a transition metal ion in an aqueous medium; a step of obtaining a composite having a polymer/titania layered structure in which the complex of the amino group-containing basic polymer and the transition metal ion is sandwiched between layers of titania, by mixing the aqueous dispersion with a water-soluble titanium compound in the aqueous medium; a step of calcining the composite in an air atmosphere at a temperature of 650° C.
    Type: Application
    Filed: March 31, 2011
    Publication date: February 14, 2013
    Applicants: KAWAMURA INSTITUTE OF CHEMICAL RESEARCH, DIC CORPORATION
    Inventors: Ren-Hua Jin, Pei-Xin Zhu
  • Publication number: 20120280186
    Abstract: Provided are a composite of nanoparticles of a metal such as gold, silver, a platinum metal, or copper, and a polymer, the composite allowing formation of a metal film having a sufficiently low resistivity in terms of practicality simply by drying at room temperature without requiring any special heating-baking step or any step of removing a protective agent with a solvent; a dispersion liquid of the composite; methods for producing the foregoing; and a plastic substrate formed from the dispersion liquid. When a dispersion liquid of a metal-nanoparticle-containing composite that is prepared by reducing metal ions in an aqueous medium in the presence of a (meth)acrylic-based copolymer having, as side chains, a polyethylene glycol chain and a phosphate residue represented by —OP(O)(OH)2 and having, at at least one end of the molecular chain, —SR (where R represents an alkyl group or the like), is applied to a base material and is then just dried at room temperature, a film having conductivity is formed.
    Type: Application
    Filed: September 6, 2010
    Publication date: November 8, 2012
    Applicant: DIC Corporation
    Inventors: Yoshiyuki Sano, Nobuhiro Sekine, Ren-Hua Jin, Hiroshi Yonehara, Masafumi Uota
  • Publication number: 20120235094
    Abstract: A silica nanofiber/metal oxide nanocrystal composite is produced by a method including associating a polymer having a linear polyethyleneimine skeleton in a water-based medium in the presence of ice, adding alkoxysilane to the water-based medium obtained in the above step to form a composite nanofiber including the associate and silica that covers the associate, while the fiber spontaneously forms a disc-shaped network structure, a step of depositing a metal oxide on a surface of the fiber by mixing the disc-shaped structure obtained in the above step with a hydrolyzable metal compound, and a step of calcining the disc-shaped. structure obtained in the step above to form a silica nanofiber through removal of the polymer in the fiber, to convert the metal oxide into a nanocrystal, and to bond the nanocrystal to the fiber. When zinc oxide is used as the metal oxide, the composite functions as a luminous body.
    Type: Application
    Filed: November 29, 2010
    Publication date: September 20, 2012
    Applicants: DIC Corporation, Kawamura Institute of Chemical Research
    Inventors: Pei-Xin Zhu, Ren-Hua Jin
  • Patent number: 8257662
    Abstract: The present invention provides a structure in which the surface of a solid substrate of any shape is covered with metal oxide, in particular, a nanostructure composite in which polyethyleneimine, which is an organic substance, and metal oxide, which is an inorganic substance, are combined in nano-meter scale, spreads at the entire surface of a substrate, and the nanostructure composite forms a nano-boundary of complex shapes so as to thoroughly cover the entire surface of the substrate; a structure in which metal ions, metal nano-particles, organic pigment molecules are contained in the nanostructure composite; a process for producing these structures which can produce these structures with ease and efficiently; and an application method for the structures as an immobilized catalyst type reactor.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: September 4, 2012
    Assignees: Kawamura Institute of Chemical Research, DIC Corporation
    Inventors: Ren-Hua Jin, Jian-Jun Yuan
  • Publication number: 20120161090
    Abstract: A highly versatile material for mid-infrared filters is provided by precisely controlling the absorption intensity of titanium oxide in an infrared region. A rutile-type titanium oxide crystal is produced by a method including a step (I) of dispersing or dissolving a complex of an amino group-containing basic polymer and a transition metal ion in an aqueous medium, a step (II) of obtaining a composite having a polymer/titania layered structure in which the complex of the amino group-containing basic polymer and the transition metal ion is sandwiched between layers of titania, by causing a hydrolysis reaction between the aqueous dispersion or aqueous solution prepared in the step (I) and a water-soluble titanium compound in the aqueous medium, and a step (III) of calcining the composite having the layered structure in an air atmosphere at a temperature of 650° C.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 28, 2012
    Applicants: KAWAMURA INSTITUTE OF CHEMICAL RESEARCH, DIC CORPORATION
    Inventors: Pei-Xin Zhu, Ren-Hua Jin
  • Patent number: 8088437
    Abstract: Disclosed is a method for producing a silver-containing nanostructure which can reduce the time required for a post treatment step and the amount of a waste material and which is achieved by the application of the reduction reaction of silver oxide; and a silver-containing nanostructure having a specific structure, which can be produced by the method. Specifically disclosed is a method for producing a silver-containing nanostructure, including dispersing a polymeric compound in which a hydrophilic segment is bonded to a polyalkyleneimine chain in a medium, adding silver oxide thereto, and carrying out a reduction reaction of the silver oxide, thereby obtaining a silver-containing nanostructure. In the method, a structure having a branched structure can be produced when a specific compound is used as a complexing agent. The silver-containing nanostructure thus produced can be used as a conductive paste or the like.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: January 3, 2012
    Assignee: DIC Corporation
    Inventors: SeungTaeg Lee, Ren-hua Jin, Rika Kimura, Zhiqiang Shi, Haifeng Zhao
  • Patent number: 8017234
    Abstract: The present invention relates to a structural object coated with a superhydrophobic nanostructure composite, the structural object being obtained by densely coating a surface of a solid substrate having a desired shape with a nanostructure obtained by combining a polymer having a polyethyleneimine skeleton with silica on the nanometer order, and bonding a hydrophobic group to the surface of the nanostructure, and a process for producing the structural object. The present invention also relates to a structural object coated with a superhydrophobic nanostructure composite, the structural object being obtained by removing the polymer having the polyethyleneimine skeleton from the nanostructure and bonding a hydrophobic group to the surface of the residual nanostructure containing silica as a main constituent component, and a process for producing the structural object. Furthermore, the present invention provides a method of using the structural object as a container for transferring an aqueous solution.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: September 13, 2011
    Assignees: DIC Corporation, Kawamura Institute of Chemical Research
    Inventors: Ren-Hua Jin, Jian-Jun Yuan
  • Patent number: 8017542
    Abstract: The present invention provides a doped titanium oxide having visible light-responsiveness whose structure is specified, and a simple production method thereof. By burning with heat a layered structure composite laminated alternately with polymer and the titania, which is obtained using basic polymer having amino group(s) and water-soluble titanium compound, carbon atoms and nitrogen atoms in the polymer are, doped to the crystalline surface of titanium oxide. As making the polymer complex with metal ions beforehand, the metal ions can be also doped to the titanium oxide.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: September 13, 2011
    Assignees: Kawamura Institute of Chemical Research, DIC Corporation
    Inventors: Ren-Hua Jin, Pei-Xin Zhu, Norimasa Fukazawa
  • Publication number: 20110195181
    Abstract: A process for producing superhydrophobic powders comprising silica as the main component and the surface of the powders have a contact angle with water of 150° or larger; and a structure having a superhydrophobic surface comprising the powders. The process comprised: introducing hydrophobic groups into the silica present in the surface of aggregates of organic/inorganic composite nanofibers obtained by combining a polymer, which is an organic substance, with silica, which is an inorganic substance, on the order of nanometer or into the silica obtained by calcining the organic/inorganic composite nanofibers and removing the polymer there from; and thereby making powders composed of the aggregates superhydrophobic. Also provided is a superhydrophobic powders obtained by the process. The structure having a superhydrophobic surface is obtained by fixing the superhydrophobic powders to a surface of a solid substrate.
    Type: Application
    Filed: July 27, 2009
    Publication date: August 11, 2011
    Applicants: DIC Corporation, Kawamura Institute of Chemical Research
    Inventors: Ren-Hua Jin, Jian-Jun Yuan
  • Publication number: 20110160374
    Abstract: The present invention relates to a structural object coated with a superhydrophobic nanostructure composite, the structural object being obtained by densely coating a surface of a solid substrate having a desired shape with a nanostructure obtained by combining a polymer having a polyethyleneimine skeleton with silica on the nanometer order, and bonding a hydrophobic group to the surface of the nanostructure, and a process for producing the structural object. The present invention also relates to a structural object coated with a superhydrophobic nanostructure composite, the structural object being obtained by removing the polymer having the polyethyleneimine skeleton from the nanostructure and bonding a hydrophobic group to the surface of the residual nanostructure containing silica as a main constituent component, and a process for producing the structural object. Furthermore, the present invention provides a method of using the structural object as a container for transferring an aqueous solution.
    Type: Application
    Filed: May 25, 2009
    Publication date: June 30, 2011
    Inventors: Ren-Hua Jin, Jian-Jun Yuan
  • Publication number: 20110020648
    Abstract: The hollow polymer particles of the present invention comprise a shell wall having for a main component thereof a copolymer obtained by polymerizing a monomer group (I) including a radical polymerizable water-soluble monomer (A) and a radical polymerizable water-insoluble monomer (B), and have a thickness of the shell wall of 5 to 80 nm. In addition, in the hollow polymer particle production process of the present invention, a monomer group (I) including a radical polymerizable water-soluble monomer (A) and a radical polymerizable water-insoluble monomer (B) is radical-polymerized using a polymerization initiator in an aqueous medium.
    Type: Application
    Filed: March 29, 2007
    Publication date: January 27, 2011
    Applicants: KAWAMURA INSTITUTE OF CHEMICAL RESEARCH, DIC CORPORATION
    Inventors: Norimasa Fukazawa, Ren-Hua Jin
  • Publication number: 20100215555
    Abstract: The present invention provides a structure in which the surface of a solid substrate of any shape is covered with metal oxide, in particular, a nanostructure composite in which polyethyleneimine, which is an organic substance, and metal oxide, which is an inorganic substance, are combined in nano-meter scale, spreads at the entire surface of a substrate, and the nanostructure composite forms a nano-boundary of complex shapes so as to thoroughly cover the entire surface of the substrate; a structure in which metal ions, metal nano-particles, organic pigment molecules are contained in the nanostructure composite; a process for producing these structures which can produce these structures with ease and efficiently; and an application method for the structures as an immobilized catalyst type reactor.
    Type: Application
    Filed: September 1, 2008
    Publication date: August 26, 2010
    Applicants: KAWAMURA INSTITUTE OF CHEMICAL RESEARCH, DIC CORPORATION
    Inventors: Ren-Hua Jin, Jian Jun Yuan