Patents by Inventor Renate Eva Klementine Landig

Renate Eva Klementine Landig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133455
    Abstract: An example device includes a nanovoided polymer element, which may be located at least in part between the electrodes. In some examples, the nanovoided polymer element may include anisotropic voids, including a gas, and separated from each other by polymer walls. The device may be an electroactive device, such as an actuator having a response time for a transition between actuation states. The gas may have a characteristic diffusion time (e.g., to diffuse half the mean wall thickness through the polymer walls) that is less than the response time. The nanovoids may be sufficiently small (e.g., below 1 micron in diameter or an analogous dimension), and/or the polymer walls may be sufficiently thin, such that the gas interchange between gas in the voids and gas absorbed by the polymer walls may occur faster than the response time, and in some examples, effectively instantaneously.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: September 28, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew Spann, Eric Schmitt, Nagi Elabbasi, Kenneth Diest, Katherine Marie Smyth, Renate Eva Klementine Landig, Andrew John Ouderkirk
  • Publication number: 20210238374
    Abstract: A method of forming a voided polymer includes forming a polymerizable composition containing a polymer precursor and a solid templating agent, forming a coating of the polymerizable composition, processing the coating to form a cured polymer material having a solid phase in a plurality of defined regions, and removing at least a portion of the solid phase from the cured polymer material to form a voided polymer layer.
    Type: Application
    Filed: January 6, 2021
    Publication date: August 5, 2021
    Inventors: Sheng Ye, Renate Eva Klementine Landig, Kenneth Alexander Diest, Andrew John Ouderkirk, Charles Robert Bowman, Robert G. Bowman, William Arthur Hendrickson, Christopher J. Rueb, Lafe Joseph Purvis, II, Wenmo Sun, Ryan Li, Oleg Yaroshchuk, Tingling Rao, Arman Boromand, Churning Zhao, Morteza Khaleghimeybodi
  • Patent number: 11045835
    Abstract: Example methods include depositing a precursor layer onto a substrate where the precursor layer includes droplets comprising a polymerizable material, inducing a phase inversion in the precursor layer to obtain a modified precursor layer including droplets of a non-polymerizable liquid within a polymerizable liquid mixture, and polymerizing the polymerizable liquid mixture to obtain a nanovoided polymer element. Examples include devices fabricated using nanovoided polymer elements fabricated using such methods, including electroactive devices such as actuators and sensors.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: June 29, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Renate Eva Klementine Landig, Kenneth Diest, Sheng Ye, Andrew John Ouderkirk
  • Patent number: 11022856
    Abstract: A display device includes a scanned projector for projecting a beam of light, and a diffraction grating for dispersing the light at a plurality of angles into a waveguide, wherein at least a portion of the diffraction grating includes a nanovoided polymer. Manipulation of the nanovoid topology, such as through capacitive actuation, can be used to reversibly control the effective refractive index of the nanovoided polymer and hence the grating efficiency. The switchable grating can be used to control the amount of diffraction of an incident beam of light through the grating thereby decreasing optical loss. Various other methods, systems, apparatuses, and materials are also disclosed.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 1, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew John Ouderkirk, Wanli Chi, Kenneth Diest, Renate Eva Klementine Landig, Tanya Malhotra, Austin Lane, Christopher Yuan Ting Liao, Katherine Marie Smyth, Jack Lindsay
  • Patent number: 11025175
    Abstract: In some examples, a device includes a nanovoided polymer element, a planarization layer disposed on a surface of the nanovoided polymer element, a first electrode disposed on the planarization layer, and a second electrode. The nanovoided polymer element may be located at least in part between the first electrode and the second electrode. The planarization layer may be located between the nanovoided polymer element and the first electrode.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 1, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Renate Eva Klementine Landig, Kenneth Diest, Spencer Allan Wells, Andrew John Ouderkirk, Sheng Ye
  • Publication number: 20210083141
    Abstract: An optical transformer includes a light source and an array of photovoltaic cells optically coupled to the light source, where at least a portion of the photovoltaic cells are connected in series. An optical connector such as a waveguide or an optical fiber may be disposed between an output of the light source and an input of the array of photovoltaic cells. Configured to generate a high voltage output, the optical transformer may be configured to power a device such as an actuator that provides a tunable displacement as a function of voltage.
    Type: Application
    Filed: October 7, 2019
    Publication date: March 18, 2021
    Inventors: Maik Andre Scheller, Andrew John Ouderkirk, Jonathan Robert Peterson, Daniele Piazza, Jeremy Thomas Braun, Kenneth Diest, Spencer Allan Wells, Renate Eva Klementine Landig, Liliana Ruiz Diaz, Tanya Malhotra
  • Publication number: 20210080688
    Abstract: A varifocal lens includes a substrate having an inclined region, a primary electrode disposed over the inclined region of the substrate, a dielectric layer disposed over the primary electrode, a deformable membrane disposed over and at least partially spaced away from the dielectric layer, a secondary electrode disposed over a surface of the deformable membrane facing toward or away from the dielectric layer and overlying at least a portion of the primary electrode, and a fluid between the membrane and the substrate, wherein a surface of the dielectric layer facing the secondary electrode comprises a textured surface.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 18, 2021
    Inventors: Renate Eva Klementine Landig, Christopher Stipe, Kenneth Diest, Andrew John Ouderkirk, Maik Andre Scheller, Sheng Ye, John Cooke, Yigit Menguc, Nagi Elabbasi, James Ransley
  • Publication number: 20210066574
    Abstract: An actuator assembly includes a primary electrode, a secondary electrode overlapping at least a portion of the primary electrode, and an electroactive polymer layer disposed between the primary electrode and the secondary electrode, where the electroactive polymer layer includes a non-vertical (e.g., sloped) sidewall with respect to a major surface of at least one of the electrodes. The electroactive polymer layer may be characterized by a non-axisymmetric shape with respect to an axis that is oriented orthogonal to an electrode major surface.
    Type: Application
    Filed: January 23, 2020
    Publication date: March 4, 2021
    Inventors: Kenneth Diest, Andrew John Ouderkirk, Renate Eva Klementine Landig, Katherine Marie Smyth, Spencer Allan Wells, Tingling Rao, Sheng Ye, Eric Schmitt, Nagi Elabbasi, Bachir Ahmed Abeid
  • Publication number: 20200224745
    Abstract: A vibration control element includes a nanovoided polymer layer having a first damping coefficient and a first resonance frequency in a first state and a second damping coefficient and a second resonance frequency in a second state, where the first damping coefficient is different from the second damping coefficient and the first resonance frequency is different from the second resonance frequency.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 16, 2020
    Inventors: Renate Eva Klementine Landig, Kenneth Diest, Andrew John Ouderkirk
  • Publication number: 20200227020
    Abstract: An acoustic element includes a nanovoided polymer layer having a first nanovoid topology in an unactuated state and a second nanovoid topology different than the first nanovoid topology in an actuated state. Capacitive actuation of the nanovoided polymer layer, for instance, can be used to reversibly control the size and shape of the nanovoids within the polymer layer and hence tune its sound damping characteristics or sound transduction behavior, e.g., during operation of the acoustic element. An acoustic element may be configured for passive or active sound attenuation. Various other apparatuses, systems, materials, and methods are also disclosed.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 16, 2020
    Inventors: Renate Eva Klementine Landig, Kenneth Diest, Andrew John Ouderkirk
  • Publication number: 20200183168
    Abstract: An example device includes a nanovoided polymer element, a first electrode, and a second electrode. The nanovoided polymer element may be located at least in part between the first electrode and the second electrode. In some examples, the nanovoided polymer element may include anisotropic voids. In some examples, anisotropic voids may be elongated along one or more directions. In some examples, the anisotropic voids are configured so that a polymer wall thickness between neighboring voids is generally uniform. Example devices may include a spatially addressable electroactive device, such as an actuator or a sensor, and/or may include an optical element. A nanovoided polymer layer may include one or more polymer components, such as an electroactive polymer.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Inventors: Andrew Spann, Eric Schmitt, Nagi Elabbasi, Kenneth Diest, Katherine Marie Smyth, Renate Eva Klementine Landig, Andrew John Ouderkirk
  • Publication number: 20200185592
    Abstract: An example device includes a nanovoided polymer element, which may be located at least in part between the electrodes. In some examples, the nanovoided polymer element may include anisotropic voids, including a gas, and separated from each other by polymer walls. The device may be an electroactive device, such as an actuator having a response time for a transition between actuation states. The gas may have a characteristic diffusion time (e.g., to diffuse half the mean wall thickness through the polymer walls) that is less than the response time. The nanovoids may be sufficiently small (e.g., below 1 micron in diameter or an analogous dimension), and/or the polymer walls may be sufficiently thin, such that the gas interchange between gas in the voids and gas absorbed by the polymer walls may occur faster than the response time, and in some examples, effectively instantaneously.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Inventors: Andrew Spann, Eric Schmitt, Nagi Elabbasi, Kenneth Diest, Katherine Marie Smyth, Renate Eva Klementine Landig, Andrew John Ouderkirk