Patents by Inventor Reza Miraghaie

Reza Miraghaie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8759085
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: June 24, 2014
    Assignee: Akonni Biosystems, Inc.
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Patent number: 8603783
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: December 10, 2013
    Assignee: Akonni Biosystems, Inc.
    Inventors: Phillip Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Patent number: 8435454
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 7, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd L. Graves, Artem Lebedev, Keith E. Schleiffer
  • Publication number: 20130090267
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: August 1, 2012
    Publication date: April 11, 2013
    Inventors: Phillip BELGRADER, Christopher G. COONEY, Robert Doebler, Anna HICKERSON, Bruce IRVINE, Ali NADIM, James STERLING, Reza MIRAGHAIE
  • Patent number: 8334117
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 18, 2012
    Assignee: Akonni Biosystems, Inc.
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Patent number: 8273300
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 25, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd Graves, Artem Lebedev
  • Patent number: 8214159
    Abstract: Methods and apparatus to assess current aspects of Quality Control useful for release of radioactive compounds for imaging, such as PET tracers as injectables, in an automated manner, without user interference, and in compliance with regulatory guidelines. The present method and system relates to an integrated automated quality control analysis of a substance utilizing a single sample injection for a plurality of inline quality control tests. A quantitative analysis of the sample via the plurality of quality control tests is conducted. A measurement value of each of the plurality of quality control parameters is determined and a comparison of each measurement value of the plurality of quality control parameters with a predetermined corresponding criterion value is made. A cumulative quality rating for the sample is determined and the validated sample is released based on the quality rating.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 3, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jianzhong Zhang, Arkadij M. Elizarov, Reza Miraghaie, Carroll Edward Ball, Hartmuth C. Kolb
  • Patent number: 8173073
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 8, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20120076692
    Abstract: A kit, for synthesizing a compound or element, which includes a modular reagent source, a modular trap and release apparatus, and a modular reaction unit. The modular reagent source includes a reagent. The modular trap and release apparatus is configured to separate components of the reagent. The modular reaction unit which is in fluid communication with the modular reagent source and the modular trap and release apparatus. In addition, the modular reaction unit includes a reaction vessel configured to facilitate a chemical reaction.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventor: Reza Miraghaie
  • Patent number: 8110148
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a batch device are presented. Application of the batch type microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the selective introduction of multiple reagents via an enhanced rotary flow distribution valve through a single inlet port of the synthetic device. The sequential introduction of multiple reagents through a single inlet port allows an optimal delivery of highly concentrated reagents into the reactor and facilitates the synthesis of the desired products with a minimal loss of materials during transfers, which is critical to the synthesis of radiolabeled biomarkers.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: February 7, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Patent number: 8071035
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 6, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Talcott Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20110207180
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Inventors: Phil BELGRADER, Christopher G. COONEY, Robert DOEBLER, Anna HICKERSON, Bruce IRVINE, Ali NADIM, James STERLING, Reza MIRAGHAIE
  • Publication number: 20110207632
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20110150714
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Application
    Filed: January 7, 2011
    Publication date: June 23, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd L. Graves, Artem Lebedev, Keith E. Schleiffer
  • Patent number: 7955841
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: June 7, 2011
    Assignee: Akonni Biosystems
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20110097245
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Application
    Filed: October 29, 2010
    Publication date: April 28, 2011
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Diener, Sean Ford, Reza Miraghaie
  • Publication number: 20110008215
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd Graves, Artem Lebedev
  • Publication number: 20100145630
    Abstract: Methods and apparatus to assess current aspects of Quality Control useful for release of radioactive compounds for imaging, such as PET tracers as injectables, in an automated manner, without user interference, and in compliance with regulatory guidelines. The present method and system relates to an integrated automated quality control analysis of a substance utilizing a single sample injection for a plurality of inline quality control tests. A quantitative analysis of the sample via the plurality of quality control tests is conducted. A measurement value of each of the plurality of quality control parameters is determined and a comparison of each measurement value of the plurality of quality control parameters with a predetermined corresponding criterion value is made. A cumulative quality rating for the sample is determined and the validated sample is released based on the quality rating.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Publication number: 20100113762
    Abstract: Methods and apparatus for facilitating the synthesis of compounds in a batch device are presented. Application of the batch type microfluidic devices to the synthesis of radiolabeled compounds is described. These methods and apparatus enable the selective introduction of multiple reagents via an enhanced rotary flow distribution valve through a single inlet port of the synthetic device. The sequential introduction of multiple reagents through a single inlet port allows an optimal delivery of highly concentrated reagents into the reactor and facilitates the synthesis of the desired products with a minimal loss of materials during transfers, which is critical to the synthesis of radiolabeled biomarkers.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Carroll Edward Ball, Arkadij M. Elizarov, Hartmuth C. Kolb, Reza Miraghaie, Jianzhong Zhang
  • Publication number: 20090087903
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: September 22, 2008
    Publication date: April 2, 2009
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie