Patents by Inventor Rezina S. Nabi

Rezina S. Nabi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9726732
    Abstract: A system and method for estimating internal parameters of a lithium-ion battery to provide a reliable battery state-of-charge estimate. The method uses a two RC-pair equivalent battery circuit model to estimate the battery parameters, including a battery open circuit voltage, an ohmic resistance, a double layer capacitance, a charge transfer resistance, a diffusion resistance and a diffusion capacitance. The method further uses the equivalent circuit model to provide a difference equation from which the battery parameters are adapted, and calculates the battery parameters from the difference equation.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 8, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jian Lin, Xidong Tang, Brian J. Koch, Joseph M. Lograsso, Damon R. Frisch, Rezina S. Nabi
  • Patent number: 8775105
    Abstract: Methods and systems for dynamically estimating the core temperature of at least one cell in a battery. In one aspect, the method includes using a combination of estimations including one based on ohmic resistance and another based on a function of thermal energy transfer through the battery. A weighting factor may be used for each of the estimations as a way to calculating a core temperature. The estimation based on ohmic resistance may be made determined independently of a measured surface temperature of the battery or any of the cells in the battery.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jian Lin, Rezina S. Nabi, Gary M. Insana, Mahendra M. Kenkre, Wenbo Wang
  • Patent number: 8207740
    Abstract: A system and method for use with a vehicle battery pack having a number of individual battery cells, such as a lithium-ion battery commonly used in hybrid electric vehicles. In one embodiment, the method evaluates individual battery cells within a vehicle battery pack in order to obtain accurate estimates regarding their average transient voltage effect, open circuit voltage (OCVCell) and/or state of charge (SOCCell) so that a cell balancing process can be performed. These cell evaluations may be performed fairly soon after the vehicle is turned off and in a manner that utilizes a minimal amount of in-vehicle resources.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jian Lin, Xidong Tang, Brian J. Koch, Joseph M. Lograsso, Andrew J. Namou, Rezina S. Nabi, Damon R. Frisch
  • Publication number: 20120109554
    Abstract: Methods and systems for dynamically estimating the core temperature of at least one cell in a battery. In one aspect, the method includes using a combination of estimations including one based on ohmic resistance and another based on a function of thermal energy transfer through the battery. A weighting factor may be used for each of the estimations as a way to calculating a core temperature. The estimation based on ohmic resistance may be made determined independently of a measured surface temperature of the battery or any of the cells in the battery.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jian Lin, Rezina S. Nabi, Gary M. Insana, Mahendra M. Kenkre, Wenbo Wang
  • Publication number: 20110309838
    Abstract: A system and method for estimating internal parameters of a lithium-ion battery to provide a reliable battery state-of-charge estimate. The method uses a two RC-pair equivalent battery circuit model to estimate the battery parameters, including a battery open circuit voltage, an ohmic resistance, a double layer capacitance, a charge transfer resistance, a diffusion resistance and a diffusion capacitance. The method further uses the equivalent circuit model to provide a difference equation from which the battery parameters are adapted, and calculates the battery parameters from the difference equation.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jian Lin, Xidong Tang, Brian J. Koch, Joseph M. Lograsso, Damon R. Frisch, Rezina S. Nabi
  • Publication number: 20100321025
    Abstract: A system and method for use with a vehicle battery pack having a number of individual battery cells, such as a lithium-ion battery commonly used in hybrid electric vehicles. In one embodiment, the method evaluates individual battery cells within a vehicle battery pack in order to obtain accurate estimates regarding their average transient voltage effect, open circuit voltage (OCVCell) and/or state of charge (SOCCell) so that a cell balancing process can be performed. These cell evaluations may be performed fairly soon after the vehicle is turned off and in a manner that utilizes a minimal amount of in-vehicle resources.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jian Lin, Xidong Tang, Brian J. Koch, Joseph M. Lograsso, Andrew J. Namou, Rezina S. Nabi, Damon R. Frisch