Patents by Inventor Rhett Brewer

Rhett Brewer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9515151
    Abstract: Methods of forming memory cells including a charge storage structure having a gettering agent therein can be useful for non-volatile memory devices. Providing for gettering of oxygen from a charge-storage material of the charge storage structure can facilitate a mitigation of detrimental oxidation of the charge-storage material.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: December 6, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Rhett Brewer, Durai V. Ramaswamy
  • Publication number: 20150364557
    Abstract: Methods of forming memory cells including a charge storage structure having a gettering agent therein can be useful for non-volatile memory devices. Providing for gettering of oxygen from a charge-storage material of the charge storage structure can facilitate a mitigation of detrimental oxidation of the charge-storage material.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 17, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rhett Brewer, Durai V. Ramaswamy
  • Patent number: 8987806
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer
  • Publication number: 20130001673
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer
  • Publication number: 20110227142
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer
  • Publication number: 20080032134
    Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: February 13, 2007
    Publication date: February 7, 2008
    Applicant: NANOSYS, Inc.
    Inventors: Jeffery Whiteford, Rhett Brewer, Mihai Buretea, Jian Chen, Karen Cruden, Xiangfeng Duan, William Freeman, David Heald, Francisco Leon, Chao Liu, Andreas Meisel, Kyu Min, J. Parce, Erik Scher
  • Publication number: 20060040103
    Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: June 7, 2005
    Publication date: February 23, 2006
    Applicant: NANOSYS, Inc.
    Inventors: Jeffery Whiteford, Rhett Brewer, Mihai Buretea, Jian Chen, Karen Cruden, Xiangfeng Duan, William Freeman, David Heald, Francisco Leon, Chao Liu, Andreas Meisel, Kyu Min, J. Parce, Erik Scher