Patents by Inventor Richard Berglind

Richard Berglind has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118771
    Abstract: A proximity sensor including a structure suspending at least one lens above a circuit board, light emitters operable to project light beams through the lens along a common projection plane, light detectors operable to detect amounts of light arriving through the lens at the detector, wherein an object in the projection plane reflects light from an emitter to one or more of the detectors, and wherein each emitter-detector pair, including one of the emitters and one of the detectors, when synchronously activated, is expected to generate a greater detection signal at the activated detector than the other detectors, were they to be synchronously activated with any of the emitters, when the object is located at a specific 2D location in the projection plane corresponding to the emitter-detector pair, and a processor identifying gestures performed by the object based on amounts of light detected by the detector of each emitter-detector pair.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 11, 2024
    Inventors: Stefan Johannes Holmgren, Jan Tomas Hartman, Tom Richard Berglind, Lars Bertil Sparf, Jonas Daniel Justus Hjelm, Jon Elis Gõsta Karlsson, Per Carl Sture Rosengren, Gunnar Martin Frõjdh, Joseph Shain, Xiatao Wang, Clarence Ray King, III, Oscar Ritzén Praglowski de Radwan
  • Patent number: 11842014
    Abstract: A proximity sensor, including light emitters and light detectors mounted on a circuit board, two stacked lenses, positioned above the emitters and the detectors, including an extruded cylindrical lens and a Fresnel lens array, wherein each emitter projects light through the two lenses along a common projection plane, wherein a reflective object located in the projection plane reflects light from one or more emitters to one or more detectors, and wherein each emitter-detector pair, when synchronously activated, generates a greatest detection signal at the activated detector when the reflective object is located at a specific 2D location in the projection plane corresponding to the emitter-detector pair, and a processor sequentially activating the emitters and synchronously co-activating one or more detectors, and identifying a location of the object in the projection plane, based on amounts of light detected by the detector of each synchronously activated emitter-detector pair.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 12, 2023
    Assignee: NEONODE INC.
    Inventors: Stefan Johannes Holmgren, Jan Tomas Hartman, Tom Richard Berglind, Lars Bertil Sparf, Jonas Daniel Justus Hjelm, John Elis Gõsta Karlsson, Per Carl Sture Rosengren, Gunnar Martin Frõjdh, Joseph Shain, Xiatao Wang, Clarence Ray King, III, Oscar Ritzén Praglowski de Radwan
  • Publication number: 20230384895
    Abstract: An optical method for identifying locations of objects in a plane, including serially projecting light beams along a detection area, from a plurality of locations along an edge of the detection area, whereby a reflective object inserted into the detection area reflects the projected light beams, directing the reflections of the projected light beams arriving at the edge of the detection area onto a plurality of light detectors, in a manner that maximizes amounts of reflected light arriving at the detectors when the light arrives at a particular angle in relation to the edge, and calculating two-dimensional coordinates of the inserted object in the detection area based on the particular angle and the outputs of the detectors.
    Type: Application
    Filed: July 2, 2023
    Publication date: November 30, 2023
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11733808
    Abstract: A sensor for a control panel, including a housing along an edge of the panel, light emitters projecting light along an in-air detection plane over the panel and detectors detecting reflections of the projected light, reflected by an object in the detection plane, lenses oriented such that each detector receives maximum light intensity when light enters a corresponding lens at a particular angle, whereby for each emitter-detector pair, when the object is located at a specific position in the detection plane, light emitted by the emitter of that pair is reflected by the object back through one of the lenses at the particular angle to the detector of that pair, the specific position being associated with that emitter-detector pair, and a processor configured to determine panel locations, map each location to a position in the detection plane associated with an emitter-detector pair, mapping the panel to the detection plane.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: August 22, 2023
    Assignee: Neonode, Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11714509
    Abstract: An optical assembly including a reflectance-based sensor emitting light into a detection plane and detecting reflections of the emitted light, reflected by an object located in the detection plane, a light redirector positioned away from the sensor redirecting light emitted by the sensor into one or more spatial planes parallel to the detection plane and, when the object is located in the one or more spatial planes, redirecting light reflected by the object into the detection plane, and a processor controlling light emitted by the sensor and receiving outputs from the sensor, and configured such that when an object passes through one or more of the spatial planes, the processor identifies both the spatial planes through which the object passes, and the location of the object within the spatial planes through which it passes, based on the received outputs and the position of the light redirector relative to the sensor.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: August 1, 2023
    Assignee: NEONODE INC.
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Publication number: 20230088402
    Abstract: Generating interactive in-air images, by emitters emitting light pulses along an in-air detection plane, light detectors, lenses configured such that there is a particular angle of entry at which each detector receives maximal light intensity when pulses enter a lens corresponding to the detector at the particular angle of entry, and there are target positions in the detection plane, associated with emitter-detector pairs, whereby for each emitter-detector pair, when an object is located at the target position, then pulses emitted by the emitter are reflected by the object into the lens corresponding to the detector at the particular angle of entry, a projector projecting an image that appears, to a user suspended in the detection plane, and a processor identifying locations of the object in the detection plane and mapping the identified locations to corresponding locations in the image, to register user interactions with the image.
    Type: Application
    Filed: November 13, 2022
    Publication date: March 23, 2023
    Inventors: Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Stefan Johannes Holmgren, Lars Bertil Sparf, Bengt Henry Hjalmar Edlund, Tom Richard Berglind
  • Publication number: 20230037571
    Abstract: A proximity sensor, including light emitters and light detectors mounted on a circuit board, two stacked lenses, positioned above the emitters and the detectors, including an extruded cylindrical lens and a Fresnel lens array, wherein each emitter projects light through the two lenses along a common projection plane, wherein a reflective object located in the projection plane reflects light from one or more emitters to one or more detectors, and wherein each emitter-detector pair, when synchronously activated, generates a greatest detection signal at the activated detector when the reflective object is located at a specific 2D location in the projection plane corresponding to the emitter-detector pair, and a processor sequentially activating the emitters and synchronously co-activating one or more detectors, and identifying a location of the object in the projection plane, based on amounts of light detected by the detector of each synchronously activated emitter-detector pair.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 9, 2023
    Inventors: Stefan Johannes Holmgren, Jan Tomas Hartman, Tom Richard Berglind, Lars Bertil Sparf, Jonas Daniel Justus Hjelm, Jon Elis Gõsta Karlsson, Per Carl Sture Rosengren, Gunnar Martin Frõjdh, Joseph Shain, Xiatao Wang, Clarence Ray King III, Oscar Ritzén Praglowski de Radwan
  • Publication number: 20220326783
    Abstract: Method including providing a sensor including light emitters, photodiode detectors, and lenses arranged so as to direct light beams from light emitters exiting lenses along a detection plane, and so as to direct light beams entering lenses at a specific angle of incidence onto photodiode detectors, mounting the sensor on a display presenting virtual input controls for an electronic device, such that the detection plane resides in an airspace in front of the display, activating light emitters to project light beams through lenses along the detection plane, wherein at least one of the light beams is interrupted by a finger, detecting light reflected by the finger, identifying emitters that projected the light beam that was reflected and photodiode detectors that detected the reflected light, as emitter-detector pairs, calculating display coordinates based on target positions associated with the identified emitter-detector pairs, and transmitting the calculated display coordinates to the electronic device.
    Type: Application
    Filed: June 9, 2022
    Publication date: October 13, 2022
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 11429230
    Abstract: A steering wheel that includes optoelectronic components, each specific optoelectronic component including a light projector projecting light out of the steering wheel at two different angles, denoted a1 and a2, a light sensor detecting reflections of the light projected by neighboring optoelectronic components by an object above the steering wheel, a lens oriented relative to the light sensor such that the light sensor receives maximum intensity when light enters the lens at either of two particular angles, specifically, when light enters the lens at a particular angle b1, and at a particular angle b2 different than b1, wherein angle b1 views reflections of light projected at angle a1 by the optoelectronic component neighboring the specific optoelectronic component on one side, and angle b2 views reflections of light projected at angle a2 by the optoelectronic component neighboring the specific optoelectronic component on the side opposite the one side.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 30, 2022
    Assignee: Neonode Inc
    Inventors: Stefan Johannes Holmgren, Lars Bertil Sparf, Tom Richard Berglind, Charles Bruce Banter, Per Carl Johan Nohlert
  • Patent number: 11379048
    Abstract: An input panel for an electronic device, including an arrangement of buttons, wherein each button is actuated when pressed, providing input to an electronic device, and a sensor, detecting location of a user's finger above the buttons, the sensor including a housing, a printed circuit board, light emitters and photodiode detectors, lenses mounted in the housing in such a manner that, when the housing is mounted along an edge of the arrangement, the lenses direct light from the emitters along a plane above the buttons, and direct light from the plane, reflected toward the lenses by an object inserted into the plane, onto the detectors, a processor configured to identify a location in the plane at which the object is inserted based on the detections of light reflected by the object, and a communications port configured to output the identified location to the electronic device.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: July 5, 2022
    Assignee: Neonode Inc.
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Publication number: 20220035477
    Abstract: A steering wheel that includes optoelectronic components, each specific optoelectronic component including a light projector projecting light out of the steering wheel at two different angles, denoted a1 and a2, a light sensor detecting reflections of the light projected by neighboring optoelectronic components by an object above the steering wheel, a lens oriented relative to the light sensor such that the light sensor receives maximum intensity when light enters the lens at either of two particular angles, specifically, when light enters the lens at a particular angle b1, and at a particular angle b2 different than b1, wherein angle b1 views reflections of light projected at angle a1 by the optoelectronic component neighboring the specific optoelectronic component on one side, and angle b2 views reflections of light projected at angle a2 by the optoelectronic component neighboring the specific optoelectronic component on the side opposite the one side.
    Type: Application
    Filed: November 25, 2019
    Publication date: February 3, 2022
    Inventors: Stefan Johannes Holmgren, Lars Bertil Sparf, Tom Richard Berglind, Charles Bruce Banter, Per Carl Johan Nohlert
  • Publication number: 20210349569
    Abstract: A sensor determining coordinates of a proximal object, including a one-dimensional array of alternating light emitters and detectors, including a plurality of light emitters projecting light along a detection plane, and a plurality of light detectors detecting reflections of the projected light, by a reflective object in the detection plane, and a plurality of lenses mounted and oriented relative to the emitters and the detectors such that the light detectors receive maximum intensity when light enters a corresponding lens at a first particular angle, whereby for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the lenses and is reflected by the object back through one of the lenses to the detector of that pair when the object is located at one of a set of positions in the detection plane, that position being associated with that emitter-detector pair.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 11, 2021
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11073948
    Abstract: A modular proximity sensor including a plurality of sensor modules, each sensor module including a housing, lenses, light detectors, each detector positioned along the image plane of a respective lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter positioned in relation to a respective lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving detector outputs corresponding to amounts of projected light reflected by an object in the detection zone, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring sensor modules monitor different detection zones, and a processor receiving outputs from each sensor module and mapping the object location in multiple detection zones over time.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 27, 2021
    Assignee: NEONODE INC.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20210223906
    Abstract: An optical assembly including a reflectance-based sensor emitting light into a detection plane and detecting reflections of the emitted light, reflected by an object located in the detection plane, a light redirector positioned away from the sensor redirecting light emitted by the sensor into one or more spatial planes parallel to the detection plane and, when the object is located in the one or more spatial planes, redirecting light reflected by the object into the detection plane, and a processor controlling light emitted by the sensor and receiving outputs from the sensor, and configured such that when an object passes through one or more of the spatial planes, the processor identifies both the spatial planes through which the object passes, and the location of the object within the spatial planes through which it passes, based on the received outputs and the position of the light redirector relative to the sensor.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 22, 2021
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Publication number: 20210081053
    Abstract: A contactless input method for an electronic device or other equipment, including projecting focused light beams from a series of locations along an edge of a control panel including a matrix of controls for an electronic device or other equipment, across a plane in an airspace in front of the controls, whereby the projected light beams traverse an area equal in size to the area of the matrix, detecting reflections of the projected light beams reflected by an object inserted into the plane, identifying which light beams are reflected, further identifying an angle at which the detected light beams are reflected, calculating a location in the plane at which the object is inserted based on the detecting, identifying and further identifying, and outputting the calculated location from the sensor to the electronic device or other equipment as an actuated corresponding location on the control panel.
    Type: Application
    Filed: October 6, 2020
    Publication date: March 18, 2021
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10949027
    Abstract: An interactive mid-air display including a display that presents a graphical user interface (GUI), optics projecting and rotating the GUI above the display such that the GUI is visible in-air in a plane rotated away from the display, a sensor including light emitters projecting beams towards the projected GUI, light detectors detecting reflections of the beams by objects interacting with the projected GUI, and a lens structure maximizing detection at each detector for light entering the lens structure at a respective location at a specific angle ?, whereby for each emitter-detector pair, maximum detection of light corresponds to the object being at a specific location in the projected GUI, in accordance with the locations of the emitter and detector and the angle ?, and a processor mapping detections of light for emitter-detector pairs to corresponding locations in the projected GUI, and translating the mapped locations to coordinates on the display.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 16, 2021
    Assignee: NEONODE INC.
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Patent number: 10802601
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: October 13, 2020
    Assignee: Neonode Inc.
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Publication number: 20200150823
    Abstract: A sensor including multiple sensor modules and a processor, each sensor module including lenses, light detectors, each detector positioned along the image plane of a lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter being positioned in relation to a lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection zone to the detectors, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring modules monitor different detection zones, and the processor receiving outputs from the sensor modules and mapping the object location in multiple detection zones over time.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20200089326
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10534479
    Abstract: A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Neonode Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain