Patents by Inventor Richard C. Chu

Richard C. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150359139
    Abstract: Cooling apparatuses, cooled electronic modules, and methods of fabrication are provided which facilitate heat transfer from an electronic component(s). The cooling apparatus includes a liquid-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a region of reduced cross-sectional coolant flow area. The heat sink includes a coolant inlet and outlet in fluid communication with the compartment, and the region of reduced cross-sectional coolant flow area provides an increased effective heat transfer coefficient between a main heat transfer surface of the conductive structure and the coolant. The cooling apparatus further includes a coolant loop coupled to the coolant inlet and outlet to facilitate flow of coolant through the coolant-carrying compartment, and a coolant filter positioned to filter contaminants from the coolant passing through the heat sink.
    Type: Application
    Filed: August 14, 2015
    Publication date: December 10, 2015
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20150359137
    Abstract: Cooling apparatuses, cooled electronic modules, and methods of fabrication are provided which facilitate heat transfer from one or more electronic components to a coolant. The cooling apparatus includes a coolant-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a varying cross-sectional coolant flow area through which coolant flows in a direction substantially parallel to a main heat transfer surface of the structure coupled to the electronic component(s). The coolant-cooled heat sink includes a coolant inlet and a coolant outlet in fluid communication with the coolant-carrying compartment, and the coolant flow area of the coolant-carrying compartment decreases, at least in part, in a direction of coolant flow through the coolant-carrying compartment.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9210830
    Abstract: A method of facilitating cooling of an electronics board having a plurality of electronic components mounted to the board by providing an apparatus which includes an immersion-cooled electronic component section and a conduction-cooled electronic component section. The immersion-cooled section includes an enclosure at least partially surrounding and forming a compartment about multiple electronic components of the electronic components mounted to the electronics board, and a fluid disposed within the compartment. The multiple electronic components are, at least in part, immersed within the fluid to facilitate immersion-cooling of those components. The conduction-cooled electronic component section includes at least one electronic component of the electronic components mounted to the electronics board, and the at least one electronic component is indirectly liquid-cooled, at least in part, via conduction of heat from the at least one electronic component.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: December 8, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9207002
    Abstract: Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system, which includes an expansion component, an evaporator, a compressor and a condenser coupled in fluid communication. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant separator coupled in fluid communication with the refrigerant flow path. The separator includes a refrigerant cold filter and a thermoelectric array. At least a portion of refrigerant passing through the refrigerant flow path passes through the cold filter, and the thermoelectric array provides cooling to the cold filter to cool refrigerant passing through the filter. By cooling refrigerant passing through the filter, contaminants solidify from the refrigerant, and are deposited in the cold filter.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: December 8, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Evan G. Colgan, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20150351281
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Application
    Filed: August 14, 2015
    Publication date: December 3, 2015
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9201474
    Abstract: Methods of facilitating cooling an electronic system are provided, which include: providing a heat sink(s) configured to cool an electronic component(s), the heat sink(s) including a coolant-carrying channel for a first coolant, the first coolant providing two-phase cooling to the electronic component(s) and being discharged from the heat sink(s) as coolant exhaust with coolant vapor; providing a node-level condensation module coupled in fluid communication with the heat sink(s), the condensation module receiving first coolant exhaust from the heat sink(s) and being liquid-cooled via a second coolant to condense coolant vapor before return to a rack-level return manifold; automatically controlling at least one of liquid-cooling of the heat sink(s), or liquid-cooling of the condensation module(s); and providing a control valve for adjusting flow rate of the second coolant to the condensation module(s), the control valve being automatically controlled based on a characterization of the coolant vapor in the cool
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: December 1, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9200851
    Abstract: A pressure control unit and method are provided for facilitating single-phase heat transfer within a liquid-based cooling system. The pressure control unit includes a pressure vessel containing system coolant, and a pressurizing mechanism associated with the pressure vessel. A coolant line couples system coolant in the pressure vessel in fluid communication with the coolant loop of the cooling system, and a regulator mechanism couples to the pressurizing mechanism to maintain pressure within the pressure vessel at or above a defined pressure threshold, thus maintaining pressure within the coolant loop above the pressure threshold. The defined pressure threshold is set to facilitate system coolant within the coolant loop remaining single-phase throughout an operational temperature range of the system coolant within the coolant loop.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 1, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9173324
    Abstract: Dehumidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet or outlet side of the rack, wherein air flows through the rack from the air inlet to the air outlet side. The heat exchanger is positioned for air passing through the electronics rack to pass across the heat exchanger, and is in fluid communication with a coolant loop for passing coolant therethrough at a temperature below a dew point temperature of the air passing across the heat exchanger so that air passing across the heat exchanger is dehumidified and cooled. A condensate collector, disposed below the heat exchanger, collects liquid condensate from the dehumidifying of air passing through the electronics rack, wherein the heat exchanger includes a plurality of sloped surfaces configured to facilitate drainage of liquid condensate from the heat exchanger to the condensate collector.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: October 27, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9167721
    Abstract: A cooling apparatus and method are provided. The cooling apparatus includes a coolant-cooled heat exchanger for facilitating dissipation of heat generated within an electronics rack, and a coolant control apparatus. The coolant control apparatus includes at least one coolant recirculation conduit coupled in fluid communication between a facility coolant supply and return, wherein the facility coolant supply and return facilitate providing facility coolant to the heat exchanger. The control apparatus further includes a coolant pump(s) associated with the recirculation conduit(s) and a controller which monitors a temperature of facility coolant supplied to the heat exchanger, and redirects facility coolant, via the coolant recirculation conduit(s) and coolant pump(s), from the facility coolant return to the facility coolant supply to, at least in part, ensure that facility coolant supplied to the heat exchanger remains above a dew point temperature.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 20, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9148983
    Abstract: Methods are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9148982
    Abstract: Methods and coolant distribution systems are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9113581
    Abstract: Apparatuses are provided for cooling an electronic component(s), which include a heat sink coupled to the electronic component(s), and having a coolant-carrying channel for a first coolant. The first coolant provides two-phase cooling to the electronic component(s), and is discharged from the heat sink as coolant exhaust, which includes coolant vapor. The apparatus further includes a node-level condensation module coupled to the heat sink to receive the coolant exhaust. The condensation module is cooled via a second coolant, and facilitates condensing the coolant vapor in the coolant exhaust. A controller automatically controls the liquid-cooling of the heat sink and/or the liquid-cooling of the node-level condensation module. A control valve adjusts a flow rate of the second coolant of the node-level condensation module, with the valve being automatically controlled by the controller based on a characterization of the coolant vapor in the coolant exhaust.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: August 18, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9102021
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: August 11, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9101078
    Abstract: A cooling apparatus and method are provided for cooling an electronics rack. The cooling apparatus includes an air-cooled cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronics rack, and includes a liquid-cooled condenser facilitating immersion-cooling of electronic components of the electronics rack, a liquid-cooled structure providing conductive cooling to electronic components of the electronics rack, or an air-to-liquid heat exchanger associated with the rack and cooling airflow passing through the electronics rack. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger. In operation, heat is transferred via circulating coolant from the electronics rack, and rejected in the liquid-to-air heat exchanger of the cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9095889
    Abstract: Thermoelectric-enhanced air and liquid cooling of an electronic system is facilitated by providing a cooling apparatus which includes a liquid-cooled structure in thermal communication with an electronic component(s), and liquid-to-liquid and air-to-liquid heat exchangers coupled in series fluid communication via a coolant loop, which includes first and second loop portions coupled in parallel. The liquid-cooled structure is supplied coolant via the first loop portion, and a thermoelectric array is disposed with the first and second loop portions in thermal contact with first and second sides of the array. The thermoelectric array operates to transfer heat from coolant passing through the first loop portion to coolant passing through the second loop portion, and cools coolant passing through the first loop portion before the coolant passes through the liquid-cooled structure.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9095942
    Abstract: Cooling apparatus and methods are provided for facilitating cooling of electronic components of an electronic system. The cooling apparatus includes a housing at least partially surrounding and forming a compartment about the components, and an immersion-cooling fluid is disposed within the compartment. At least one component of the electronic system is at least partially non-immersed within the fluid in the compartment. A wicking film element is physically coupled to a main surface of the at least one component and partially disposed within the fluid within the compartment. A coupling element physically couples the wicking film element to the main surface of the at least one component without the coupling element overlying the main surface of the component(s). As an enhancement, the wicking film element wraps over the component to physically couple to two opposite main sides of the component.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9089936
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: July 28, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9075582
    Abstract: A cooling apparatus and method are provided for cooling one or more electronic components of an electronic subsystem of an electronics rack. The cooling apparatus includes a heat sink, which is configured to couple to an electronic component, and which includes a coolant-carrying channel for coolant to flow therethrough. The coolant provides two-phase cooling to the electronic component, and is discharged from the heat sink as coolant exhaust which comprises coolant vapor to be condensed. The cooling apparatus further includes a node-level condensation module, associated with the electronic subsystem, and coupled in fluid communication with the heat sink to receive the coolant exhaust from the heat sink. The condensation module is liquid-cooled, and facilitates condensing of the coolant vapor in the coolant exhaust. A controller automatically controls the liquid-cooling of the heat sink and/or the liquid-cooling of the node-level condensation module.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: July 7, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9078379
    Abstract: A method is provided for facilitating extraction of heat from a heat-generating electronic component. The method includes providing a heat sink, the heat sink including a thermally conductive structure which has one or more coolant-carrying channels and one or more vapor-condensing channels. A membrane is disposed between the coolant-carrying channel(s) and the vapor-condensing channel(s). The membrane includes at least one vapor-permeable region, at least a portion of which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s) to the vapor-condensing channel(s). The heat sink further includes one or more coolant inlets coupled to provide a first liquid coolant flow to the coolant-carrying channel(s), and a second liquid coolant flow to condense vapor within the vapor-condensing channel(s).
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: July 7, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9069532
    Abstract: A cooling apparatus and method are provided for cooling one or more electronic components of an electronic subsystem of an electronics rack. The cooling apparatus includes a heat sink, which is configured to couple to an electronic component, and which includes a coolant-carrying channel for coolant to flow therethrough. The coolant provides two-phase cooling to the electronic component, and is discharged from the heat sink as coolant exhaust which comprises coolant vapor to be condensed. The cooling apparatus further includes a node-level condensation module, associated with the electronic subsystem, and coupled in fluid communication with the heat sink to receive the coolant exhaust from the heat sink. The condensation module is liquid-cooled, and facilitates condensing of the coolant vapor in the coolant exhaust. A controller automatically controls the liquid-cooling of the heat sink and/or the liquid-cooling of the node-level condensation module.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: June 30, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madusudan K. Iyengar, Robert E. Simons