Patents by Inventor Richard C. Dougherty

Richard C. Dougherty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918324
    Abstract: A pulse transit time is measured non-invasively and used to calculate a blood pressure value. A method of determining one or more blood pressure values includes propagating an alternating drive current through a thorax of a subject via electrodes located on a wrist-worn device. Resulting voltage levels of the subject are sensed by the wrist-worn device. The voltage levels are processed to detect when a volume of blood is ejected from the left ventricle. Output from a pulse arrival sensor coupled to the wrist-worn device is processed to detect when a blood pressure pulse generated by ejection of the volume of blood from the left ventricle arrives at the wrist. A pulse transit time (PTT) for transit of the blood pressure pulse from the left ventricle to the wrist is calculated. One or more blood pressure values for the subject are determined based on the PTT.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: March 5, 2024
    Assignee: Apple Inc.
    Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi K. Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
  • Publication number: 20230132628
    Abstract: Provided herein are hydrocarbon compositions suitable for use as a lubricant comprising sulfur between about 30 ppm to about 220 ppm, and aromatics between about 0.2 wt. % to about 3 wt. %. The present hydrocarbon compositions comprise a blend of one or more base stocks and a high-sulfur containing material and can demonstrate an improved oxidation performance as a lubricant in weighted piston deposit merits and/or by viscosity increase.
    Type: Application
    Filed: February 12, 2021
    Publication date: May 4, 2023
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Joshua D. Catanach, Clara Rodrigue, Christine A. Zielinski, Charles L. Baker, JR., Richard C. Dougherty, Min Chen
  • Patent number: 11441080
    Abstract: Systems and methods are provided for co-processing of used lubricant oils with a coker feedstock in a fluidized coking process to form lubricant base stocks. The fluidized coking process can remove contaminants and/or additives from used lubricant oils with modest conversion of the lubricant boiling range portion.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: September 13, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Richard C. Dougherty, Kristin L. Sanfilippo, Christine A. Zielinski, Charles L. Baker, Jr.
  • Patent number: 11352579
    Abstract: Disclosed are Group III base stocks comprising at least 30 wt % naphthenes, a viscosity index from 120 to 145; and a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Daniel J. Eichelsdoerfer, Richard C. Dougherty, Charles L. Baker, Jr., Rugved P. Pathare, Bryan E. Hagee
  • Patent number: 10767125
    Abstract: Disclosed are Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); a unique ratio of branched carbons to straight chain carbons (BC/SC); a unique ratio of branched carbons to terminal carbons (BC/TC); and unique MRV behavior as a function of base stock naphthene ratio (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: September 8, 2020
    Assignee: EXXONMOBLE RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel J. Eichelsdoerfer, Richard C. Dougherty, Charles L. Baker, Jr., Debra A. Sysyn
  • Publication number: 20200263107
    Abstract: Systems and methods are provided for co-processing of used lubricant oils with a coker feedstock in a fluidized coking process to form lubricant base stocks. The fluidized coking process can remove contaminants and/or additives from used lubricant oils with modest conversion of the lubricant boiling range portion.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Inventors: Richard C. Dougherty, Kristin L. Sanfilippo, Christine A. Zielinski, Charles L. Baker, JR.
  • Publication number: 20190367824
    Abstract: Disclosed are Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); a unique ratio of branched carbons to straight chain carbons (BC/SC); a unique ratio of branched carbons to terminal carbons (BC/TC); and unique MRV behavior as a function of base stock naphthene ratio (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Daniel J. EICHELSDOERFER, Richard C. DOUGHERTY, Charles L. BAKER, JR., Debra A. SYSYN
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 10428284
    Abstract: Disclosed are Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); a unique ratio of branched carbons to straight chain carbons (BC/SC); a unique ratio of branched carbons to terminal carbons (BC/TC); and unique MRV behavior as a function of base stock naphthene ratio (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 1, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel J. Eichelsdoerfer, Richard C. Dougherty, Charles L. Baker, Jr., Debra A. Sysyn
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Publication number: 20190194562
    Abstract: Disclosed are Group III base stocks comprising at least 30 wt % naphthenes, a viscosity index from 120 to 145; and a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Inventors: Daniel J. EICHELSDOERFER, Richard C. DOUGHERTY, Charles L. BAKER, JR., Rugved P. PATHARE, Bryan E. HAGEE
  • Publication number: 20190194571
    Abstract: Disclosed are lubricant compositions prepared with Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); and a unique ratio of branched carbons to straight chain (BC/SC) carbons; a unique ratio of branched carbons to terminal carbons (BC/TC); and unique MRV behavior as a function of base stock naphthene ratio (2R+N/1RN).
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Inventors: Daniel J. EICHELSDOERFER, Richard C. DOUGHERTY, Charles L. BAKER, JR., Rugved P. PATHARE
  • Publication number: 20190194558
    Abstract: Disclosed are Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); a unique ratio of branched carbons to straight chain carbons (BC/SC); a unique ratio of branched carbons to terminal carbons (BC/TC); and unique MRV behavior as a function of base stock naphthene ratio (2R+N/1RN). A method for preparing the base stocks is also disclosed. Also disclosed is a lubricating oil having the base stock as a major component, and an additive as a minor component.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Inventors: Daniel J. EICHELSDOERFER, Richard C. DOUGHERTY, Charles L. BAKER, JR., Debra A. SYSYN
  • Publication number: 20190194569
    Abstract: Disclosed are lubricant compositions with improved oxidation stability which are prepared with Group III base stocks comprising greater than or equal to about 90 wt. % saturated hydrocarbons (saturates); a viscosity index from 120 to 145; a unique ratio of molecules with multi-ring naphthenes to single ring naphthenes (2R+N/1RN); a unique ratio of branched carbons to straight chain (BC/SC) carbons; and a unique ratio of branched carbons to terminal chain (BC/TC) carbons.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Inventors: Daniel J. EICHELSDOERFER, Richard C. DOUGHERTY, Charles L. BAKER, JR.
  • Publication number: 20190002782
    Abstract: A lubricant base oil is provided. The lubricant base oil has a low temperature property determined using a stepwise regression of carbon-13 nuclear magnetic resonance (NMR) spectroscopy peak values. A method of selecting candidate lubricant base oils, or mixtures thereof, having acceptable low temperature performance is also provided. An online method of blending a lubricant base oil and a finished lubricant are also provided.
    Type: Application
    Filed: June 20, 2018
    Publication date: January 3, 2019
    Inventors: Charles L. BAKER, JR., Liezhong GONG, Eugenio SANCHEZ, Angela R. HORTON, Debra A. SYSYN, Richard C. DOUGHERTY
  • Publication number: 20180362860
    Abstract: Methods and catalysts are provided for performing dewaxing of diesel boiling range fractions, such as trim dewaxing, that allow for production of diesel boiling range fuels with improved cold flow properties at desirable yields. In some aspects, the methods can include use of dewaxing catalysts based on an MEL framework structure (ZSM-11) to provide improved dewaxing activity. This can provide sufficient dewaxing activity to achieve a desired level of improvement in cold flow properties at the lower hydrotreating temperatures that are generally desired near the start of operation of a hydrotreating reactor. In other aspects, the methods can include use of MEL dewaxing catalysts with reduced ratios of molecular sieve to binder so that trim dewaxing can be provided while maintaining a desirable yield under end-of-run hydrotreating conditions.
    Type: Application
    Filed: December 19, 2016
    Publication date: December 20, 2018
    Inventors: Stephen J. McCarthy, Paul Podsiadlo, Chuansheng Bai, Richard C. Dougherty, Wenyih F. Lai, William W. Lonergan
  • Patent number: 10011787
    Abstract: Methods are provided for producing Group II and Group III base stocks with a controlled or consistent aromatics content. An aromatics-rich base stock, such as a Group I base stock or an alkylated aromatic base stock, can be added to the catalytically treated base stock in a minimal amount after the final catalytic treatment step but prior to fractionation. At the beginning of a processing run for forming lubricant base stock products, about 0.25 wt % to about 1.25 wt % of the Group I base stock can be added to a catalytically processed feed after the final catalytic processing stage but prior to fractionation to form the Group II and/or Group III base stock. During the course of the processing run, the amount of Group I base stock added can be reduced roughly in correspondence with the increase in aromatics caused by catalyst deactivation.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: July 3, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kristen S. Lyon, Eric D. Joseck, Gary P. Schleicher, Richard C. Dougherty, Angela Horton
  • Publication number: 20180002617
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 4, 2018
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 9493718
    Abstract: Hydrocarbon feeds can be hydrotreated in a continuous gas-phase environment and then dewaxed in a liquid-continuous reactor. The liquid-continuous reactor can advantageously be operated in a manner that avoids the need for a hydrogen recycle loop. A contaminant gas can be added to the hydrogen input for the liquid-continuous reactor to modify the hydrogen consumption in the reactor.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 15, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard C. Dougherty, Michael A. Hayes, Benjamin S. Umansky, William E. Lewis