Patents by Inventor Richard C. Schmidt

Richard C. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11949725
    Abstract: One embodiment provides for a media playback device comprising a memory device to store instructions; one or more processors to execute the instructions stored on the memory device, the instructions to cause the one or more processors to provide a playback queue manager to manage one or more media playback queues including a set of media items associated with a scheduled event and a playback routing manager to determine an output destination for the set of media items based on context associated with the scheduled event, the playback routing manager to route output of playback of the set of media items to one or more of multiple different connected media playback devices based on the context associated with the scheduled event.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: April 2, 2024
    Assignee: Apple Inc.
    Inventors: Thomas M. Alsina, David C. Graham, Andrew M. Wadycki, Edward T. Schmidt, Joel M. Lopes Da Silva, Richard M. Powell, Gregory R. Chapman
  • Patent number: 9443633
    Abstract: A multi-leaf collimator with electromagnetically actuated leaves. The multi-leaf collimator includes a plurality of leaves, a leaf guide configured to support the plurality of leaves, and a plurality of magnets. Each leaf includes a blocking portion that is radio opaque, a drive portion connected to the blocking portion, and a coil embedded in the drive portion. The coil is operatively connected to an electrical current source to generate a first magnetic field. The first magnetic field interacts with the magnetic field generated by the magnet to thereby move the leave to a desired state. The leaves have the capability of moving at speeds of 50 cm/s up to and higher than 1 m/s.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: September 13, 2016
    Assignee: ACCURAY INCORPORATED
    Inventors: Matthew J. Orton, Robert Mastromattei, Robert O'Connell, Richard C. Schmidt, Graham Reitz
  • Publication number: 20140239204
    Abstract: A multi-leaf collimator with electromagnetically actuated leaves. The multi-leaf collimator includes a plurality of leaves, a leaf guide configured to support the plurality of leaves, and a plurality of magnets. Each leaf includes a blocking portion that is radio opaque, a drive portion connected to the blocking portion, and a coil embedded in the drive portion. The coil is operatively connected to an electrical current source to generate a first magnetic field. The first magnetic field interacts with the magnetic field generated by the magnet to thereby move the leave to a desired state. The leaves have the capability of moving at speeds of 50 cm/s up to and higher than 1 m/s.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 28, 2014
    Inventors: Matthew J. Orton, Robert Mastromattei, Robert O'Connell, Richard C. Schmidt, Graham Reitz
  • Patent number: 7186986
    Abstract: A high efficiency radiation detector employs longitudinally extending converter elements receiving longitudinally propagating radiation to produce high-energetic electrons received by detector structures in interstitial spaces. The secondary electron generation in this architecture allows great freedom in selection of converter materials and thickness. A variety of detector mechanisms may be used including ionization-type detectors or scintillation-type detector.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: March 6, 2007
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ralf Hinderer, Harald Keller, Thomas R. Mackie, Jeffrey Kapatoes, David W. Pearson, Paul J. Reckwerdt, Richard C. Schmidt
  • Publication number: 20040183026
    Abstract: A high efficiency radiation detector employs longitudinally extending converter elements receiving longitudinally propagating radiation to produce high-energetic electrons received by detector structures in interstitial spaces. The secondary electron generation in this architecture allows great freedom in selection of converter materials and thickness. A variety of detector mechanisms may be used including ionization-type detectors or scintillation-type detector.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 23, 2004
    Inventors: Ralf Hinderer, Harald Keller, Thomas R. Mackie, Jeffrey Kapatoes, David W. Pearson, Paul J. Reckwerdt, Richard C. Schmidt
  • Patent number: 5850432
    Abstract: A method and system of utilizing advanced intelligent network services for capturing and recording dial-around call information is provided. Dial-around calls are calls directed to a telecommunication services provider other than the services provider designated by the owner or operator of the originating telecommunications device, such as a pay telephone. When a public switched telephone network effects a "dial-around" of a pre-subscribed telecommunication services provider at a pay telephone, accounting records generated by the local telecommunication services provider do not identify that the call originated at a pay telephone. Thus, important billing and asset management data are lost to the pay telephone operator. The method and system of the present invention utilize advanced intelligent network services to recognize dial-around calls and to produce a record for the pay telephone operator which will identify and record billing and utilization information for dial-around calls.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: December 15, 1998
    Assignee: BellSouth Corporation
    Inventors: Nailesh B. Desai, Richard C. Schmidt