Patents by Inventor Richard Fleeter

Richard Fleeter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050090199
    Abstract: A communication system is provided that allows the use of low-cost, low-power remote terminal units that communicate substantially asynchronously and independently to a base station. To minimize cost and complexity, the remote terminal units are configured similarly, including the use of substantially identical transmission schemes, such as a common Direct Sequence Spread Spectrum (DSSS) code. To minimize collisions among transmissions, the communication system is designed to use a high-gain antenna with a limited field of view, to limit the number of cotemporaneous, or overlapping transmissions that are received at the base station. To cover a wide area, the limited field of view is swept across the area of coverage. To overcome potential losses caused by collisions, the remote terminal units are configured to repeat transmissions; to minimize repeated collisions, the repeat interval and/or duration is randomized.
    Type: Application
    Filed: November 18, 2004
    Publication date: April 28, 2005
    Inventors: Richard Fleeter, John Hanson, Scott McDermott, Raymond Zenick
  • Publication number: 20030132350
    Abstract: The excess space and weight capacity of a conventional launch vehicle for a high-energy orbit, such as GEO, is used to deploy satellites to a low-energy orbit, such as LEO. In a preferred embodiment, an orbit-transfer vehicle provides the navigation, propulsion, and control systems required to transport a payload satellite from a high-energy-transfer orbit, such as GTO, to a predetermined low-energy orbit. Upon entering the low-energy orbit, the payload satellite is released from the orbit-transfer vehicle. To reduce the fuel requirements for this deployment via the orbit-transfer vehicle, a preferred embodiment includes aerobraking to bring the satellite into a low-earth orbit.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 17, 2003
    Inventors: David Goldstein, Scott A. McDermott, Paul Gloyer, Richard Fleeter
  • Patent number: 6561461
    Abstract: An orbit-transfer vehicle provides the navigation, propulsion, and control systems required to transport a payload satellite from a geosynchronous-transfer orbit (GTO) to a predetermined low-earth orbit (LEO). Upon entering low-earth orbit, the payload satellite is deployed from the orbit-transfer vehicle. To reduce the cost and complexity of the payload satellite, the orbit-transfer vehicle is configured to provide common functional services, such as communications and power regulation, to the payload satellite during the transport, and/or after deployment. To reduce the fuel requirements for this deployment via the orbit-transfer vehicle, a preferred embodiment includes aerobraking to bring the satellite into a low-earth orbit.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: May 13, 2003
    Assignee: Aero Astro, Inc.
    Inventors: David Goldstein, Scott A. McDermott, Paul Gloyer, Richard Fleeter
  • Patent number: 6550720
    Abstract: The excess space and weight capacity that is typical of a launch of large satellites to high-energy orbits, such as a geosynchronous orbit, is used to deploy small satellites at a substantially lower-energy orbit, such as a low-earth orbit. An orbit-transfer vehicle provides the navigation, propulsion, and control systems required to transport a payload satellite from a geosynchronous-transfer orbit (GTO) to a predetermined low-earth orbit (LEO). Depending upon the particular configuration, upon achieving the low-earth orbit, the orbit transfer vehicle either releases the payload satellite, or remains attached to the payload satellite to provide support services, such as power, communications, and navigation, to the payload satellite. To reduce the fuel requirements for this deployment via the orbit-transfer vehicle, the orbit-transfer vehicle employs aerobraking to bring the satellite into a low-earth orbit.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: April 22, 2003
    Assignee: AeroAstro
    Inventors: Richard Fleeter, Daniel B. DeBra, Paul Gloyer, Zeno Wahl, David Goldstein
  • Publication number: 20030010868
    Abstract: The excess space and weight capacity of a conventional launch vehicle for a high-energy orbit, such as GEO, is used to deploy satellites to a low-energy orbit, such as LEO. In a preferred embodiment, an orbit-transfer vehicle provides the navigation, propulsion, and control systems required to transport a payload satellite from a high-energy-transfer orbit, such as GTO, to a predetermined low-energy orbit. Upon entering the low-energy orbit, the payload satellite is released from the orbit-transfer vehicle. To reduce the fuel requirements for this deployment via the orbit-transfer vehicle, a preferred embodiment includes aerobraking to bring the satellite into a low-earth orbit.
    Type: Application
    Filed: August 9, 2001
    Publication date: January 16, 2003
    Inventors: Scott A. McDermott, Paul Gloyer, Richard Fleeter
  • Publication number: 20020190160
    Abstract: The excess space and weight capacity that is typical of a launch of large satellites to high-energy orbits, such as a geosynchronous orbit, is used to deploy small satellites at a substantially lower-energy orbit, such as a low-earth orbit. An orbit-transfer vehicle provides the navigation, propulsion, and control systems required to transport a payload satellite from a geosynchronous-transfer orbit (GTO) to a predetermined low-earth orbit (LEO). Depending upon the particular configuration, upon achieving the low-earth orbit, the orbit transfer vehicle either releases the payload satellite, or remains attached to the payload satellite to provide support services, such as power, communications, and navigation, to the payload satellite. To reduce the fuel requirements for this deployment via the orbit-transfer vehicle, the orbit-transfer vehicle employs aerobraking to bring the satellite into a low-earth orbit.
    Type: Application
    Filed: August 9, 2001
    Publication date: December 19, 2002
    Inventors: Richard Fleeter, Daniel B. DeBra, Paul Gloyer, Zeno Wahl, David Goldstein