Patents by Inventor Richard H. Strandberg

Richard H. Strandberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8351558
    Abstract: The disclosure provides an effective means for fine-resolution determination of the frequency content of an RF signal using low speed digital circuits. The disclosure relates to a method and apparatus for decomposing a high frequency RF signal into several low frequency signals or data streams without loss of any information and without the use of extraneous circuit components such as local oscillators, mixers or offset phase-locked loops. Single or multiple phase oscillator outputs are fed directly to a single or multiple direct RF frequency-to-digital (DrfDC) circuits. The front end of the DrfDC circuit decomposes a high frequency signal into several low frequency signals without loss of any information. The low frequency signals are processed by the back-end of the DrfDC and converted into digital data streams. The digital data streams are then combined and averaged to represent the frequency of the input RF signal.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 8, 2013
    Assignee: Panasonic Corporation
    Inventors: Richard H. Strandberg, Paul Cheng-Po Liang
  • Publication number: 20110075755
    Abstract: The disclosure provides an effective means for fine-resolution determination of the frequency content of an RF signal using low speed digital circuits. The disclosure relates to a method and apparatus for decomposing a high frequency RF signal into several low frequency signals or data streams without loss of any information and without the use of extraneous circuit components such as local oscillators, mixers or offset phase-locked loops. Single or multiple phase oscillator outputs are fed directly to a single or multiple direct RF frequency-to-digital (DrfDC) circuits. The front end of the DrfDC circuit decomposes a high frequency signal into several low frequency signals without loss of any information. The low frequency signals are processed by the back-end of the DrfDC and converted into digital data streams. The digital data streams are then combined and averaged to represent the frequency of the input RF signal.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Inventors: Richard H. Strandberg, Paul Cheng-Po Liang
  • Patent number: 7675995
    Abstract: A device for transmitting information in a communications signal is envisioned. The information is modulated, at least in part, with a first angle-related characteristic. The device has a digital conversion circuit operable to convert information to be broadcast into a digital form. A constellation mapper is coupled to the digital conversion circuit, and is operable to convert the digital information into information associated with a constellation. A trajectory generation circuit generates samples denoting a trajectory within the constellation for the information. A transition analysis circuit determines a change in value of an angle-related characteristic in a transition between two samples, and a threshold detection circuit detects whether the change in value fails to meet a particular threshold. An angle-related characteristic distribution circuit can then distribute a portion of the change in value associated with the transition to at least one other transition.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 9, 2010
    Assignee: Panasonic Corporation
    Inventors: Paul Cheng-Po Liang, Richard H. Strandberg
  • Patent number: 7603089
    Abstract: Methods and apparatus for conditioning low-magnitude events in electrical signals. According to an exemplary method, a low-magnitude event occurring in a signal trajectory of a received electrical signal is analyzed. The low-magnitude event is defined by a data point on a signal trajectory having a magnitude that is less than a predetermined signal magnitude minimum. A correction impulse having a correction magnitude and a correction phase is generated based on the magnitude and phase of data points on the signal trajectory that occur prior to and after the occurrence of the low magnitude event. The correction impulse is combined with the original electrical signal in the temporal vicinity of the low-magnitude event, thereby generating a corrected electrical signal having a more controlled bandwidth.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Richard H. Strandberg, Paul Cheng-Po Liang
  • Publication number: 20080219331
    Abstract: Methods and apparatus for reducing the effects of digital-to-analog converter (DAC) images and transmission spurious effects in a receive frequency band of a radio frequency (RF) transceiver. A transceiver apparatus includes a transmitter portion having a DAC, a receiver portion configured to receive RF signals in a receive frequency band, and a variable rate clock generator. The variable rate clock generator is used to provide an oversampling clock for the DAC. The rate of the oversampling clock is adjustable and is selected so that an upconverted version of a DAC image created by the DAC is steered away from frequencies within the receive frequency band. A notch-effect low-pass filter (NELPF) may also, or alternatively, be used in the transceiver to reduce transmission spurious effects in the receive frequency band.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 11, 2008
    Inventors: Paul Cheng-Po Liang, Richard H. Strandberg
  • Publication number: 20080045163
    Abstract: Methods and apparatus for conditioning low-magnitude events in electrical signals. According to an exemplary method, a low-magnitude event occurring in a signal trajectory of a received electrical signal is analyzed. The low-magnitude event is defined by a data point on a signal trajectory having a magnitude that is less than a predetermined signal magnitude minimum. A correction impulse having a correction magnitude and a correction phase is generated based on the magnitude and phase of data points on the signal trajectory that occur prior to and after the occurrence of the low magnitude event. The correction impulse is combined with the original electrical signal in the temporal vicinity of the low-magnitude event, thereby generating a corrected electrical signal having a more controlled bandwidth.
    Type: Application
    Filed: August 17, 2006
    Publication date: February 21, 2008
    Inventors: Richard H. Strandberg, Paul Cheng-Po Liang