Patents by Inventor Richard J. Cartwright

Richard J. Cartwright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968268
    Abstract: An audio session management method may involve: determining, by an audio session manager, one or more first media engine capabilities of a first media engine of a first smart audio device, the first media engine being configured for managing one or more audio media streams received by the first smart audio device and for performing first smart audio device signal processing for the one or more audio media streams according to a first media engine sample clock; receiving, by the audio session manager and via a first application communication link, first application control signals from the first application; and controlling the first smart audio device according to the first media engine capabilities, by the audio session manager, via first audio session management control signals transmitted to the first smart audio device via a first smart audio device communication link and without reference to the first media engine sample clock.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 23, 2024
    Assignees: Dolby Laboratories Licensing Corporation, Dolby International AB
    Inventors: Glenn N. Dickins, Mark R. P. Thomas, Alan J. Seefeldt, Joshua B. Lando, Daniel Arteaga, Carlos Medaglia Dyonisio, David Gunawan, Richard J. Cartwright, Christopher Graham Hines
  • Publication number: 20240098435
    Abstract: A computer implemented system for rendering captured audio soundfields to a listener comprises apparatus to deliver the audio soundfields to the listener. The delivery apparatus delivers the audio soundfields to the listener with first and second audio elements perceived by the listener as emanating from first and second virtual source locations, respectively, and with the first audio element and/or the second audio element delivered to the listener from a third virtual source location. The first virtual source location and the second virtual source location are perceived by the listener as being located to the front of the listener, and the third virtual source location is located to the rear or the side of the listener.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 21, 2024
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Richard J. CARTWRIGHT, David S. MCGRATH, Glenn N. DICKINS
  • Publication number: 20230410829
    Abstract: In an embodiment, a method comprises: receiving bands of power spectra of an input audio signal and a microphone covariance, and for each band: estimating, using a classifier, respective probabilities of speech and noise; estimating, using a directionality model, a set of means for speech and noise, or a set of means and covariances for speech and noise, based on the microphone covariance for the band and the probabilities; estimating, using a level model, a mean and covariance of noise power based on the probabilities and the power spectra; determining a first noise suppression gain based on the directionality model; determining a second noise suppression gain based on the level model; selecting the first or second noise suppression gain or their sum based on a signal-to-noise ratio of the input audio signal; and scaling a time-frequency representation of the input signal by the selected noise suppression gain.
    Type: Application
    Filed: November 4, 2021
    Publication date: December 21, 2023
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Richard J. CARTWRIGHT, Ning WANG
  • Publication number: 20230319190
    Abstract: An audio processing method may involve receiving output signals from each microphone of a plurality of microphones in an audio environment, the output signals corresponding to a current utterance of a person and determining, based on the output signals, one or more aspects of context information relating to the person, including an estimated current proximity of the person to one or more microphone locations. The method may involve selecting two or more loudspeaker-equipped audio devices based, at least in part, on the one or more aspects of the context information, determining one or more types of audio processing changes to apply to audio data being rendered to loudspeaker feed signals for the audio devices and causing one or more types of audio processing changes to be applied. In some examples, the audio processing changes have the effect of increasing a speech to echo ratio at one or more microphones.
    Type: Application
    Filed: July 29, 2020
    Publication date: October 5, 2023
    Applicants: Dolby Laboratories Licensing Corporation, Dolby International AB
    Inventors: Glenn N. DICKINS, Christopher Graham HINES, David GUNAWAN, Richard J. CARTWRIGHT, Alan J. SEEFELDT, Daniel Arteaga, Mark R.P. THOMAS, Joshua B. LANDO
  • Patent number: 11770666
    Abstract: A computer implemented system for rendering captured audio soundfields to a listener comprises apparatus to deliver the audio soundfields to the listener. The delivery apparatus delivers the audio soundfields to the listener with first and second audio elements perceived by the listener as emanating from first and second virtual source locations, respectively, and with the first audio element and/or the second audio element delivered to the listener from a third virtual source location. The first virtual source location and the second virtual source location are perceived by the listener as being located to the front of the listener, and the third virtual source location is located to the rear or the side of the listener.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: September 26, 2023
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Richard J. Cartwright, David S. McGrath, Glenn N. Dickins
  • Patent number: 11695812
    Abstract: An apparatus and method relating to use of a physical writing surface (132) during a videoconference or presentation. Snapshots of a whiteboard (132) are identified by applying a difference measure to the video data (e.g., as a way of comparing frames at different times). Audio captured by a microphone may be processed to generate textual data, wherein a portion of the textual data is associated with each snapshot. The writing surface may be identified (enrolled) using gestures. Image processing techniques may be used to transform views of a writing surface.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: July 4, 2023
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Timothy Alan Port, Richard J. Cartwright
  • Publication number: 20230208921
    Abstract: An audio session management method may involve: determining, by an audio session manager, one or more first media engine capabilities of a first media engine of a first smart audio device, the first media engine being configured for managing one or more audio media streams received by the first smart audio device and for performing first smart audio device signal processing for the one or more audio media streams according to a first media engine sample clock; receiving, by the audio session manager and via a first application communication link, first application control signals from the first application; and controlling the first smart audio device according to the first media engine capabilities, by the audio session manager, via first audio session management control signals transmitted to the first smart audio device via a first smart audio device communication link and without reference to the first media engine sample clock.
    Type: Application
    Filed: July 28, 2020
    Publication date: June 29, 2023
    Applicants: DOLBY INTERNATIONAL AB, DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Glenn N. Dickins, Mark Richard Paul Thomas, Alan J. Seefeldt, Joshua B. Lando, Daniel Arteaga, Carlos Medaglia Dyonisio, David Gunawan, Richard J. Cartwright, Christopher Graham Hines
  • Publication number: 20230037824
    Abstract: Noise compensation method comprising: (a) receiving a content stream including content audio data; (b) receiving first microphone signals from a first device; (c) detecting ambient noise from a noise source location in or near the audio environment; (d) causing a first wireless signal to be transmitted from the first device to a second device, the first wireless signal including instructions for the second device to record an audio segment (e) receiving a second wireless signal from the second device; (f) determining a content stream audio segment time interval for a content stream audio segment; (g) receiving a third wireless signal from the second device, including a recorded audio segment captured via a second device microphone; (h) determining a second device ambient noise signal at the second device location; and (i) implementing a noise compensation method for the content audio data based, at least in part, on the second device ambient noise signal.
    Type: Application
    Filed: December 8, 2020
    Publication date: February 9, 2023
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Benjamin Alexander Jancovich, Timothy Alan Port, Andrew P. Reilly, Richard J. Cartwright
  • Publication number: 20230026347
    Abstract: Some noise compensation methods involve receiving microphone signals corresponding to ambient noise from a noise source location in or near an audio environment, determining or estimating a listener position in the audio environment and estimating at least one critical distance, which is a distance from the noise source location at which directly propagated sound pressure is equal to diffuse field sound pressure. Some examples involve estimating whether the listener position is within the at least one critical distance and implementing a noise compensation method for the ambient noise based, at least in part, on an estimate of whether the listener position is within the critical distance.
    Type: Application
    Filed: December 8, 2020
    Publication date: January 26, 2023
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Benjamin Alexander Jancovich, Timothy Alan Port, Andrew P. Reilly, Richard J. Cartwright
  • Publication number: 20220351724
    Abstract: A method for selecting a device for audio processing may involve receiving a first wakeword confidence metric from a first device that includes at least a first microphone and receiving a second wakeword confidence metric from a second device that includes at least a second microphone. The first and second wakeword confidence metrics may correspond to a first local maximum of a first plurality of wakeword confidence values determined by the first device and a second local maximum of a second plurality of wakeword confidence values determined by the second device. The method may involve comparing the first wakeword confidence metric and the second wakeword confidence metric and selecting a device for subsequent audio processing based, at least in part, on a comparison of the first wakeword confidence metric and the second wakeword confidence metric.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 3, 2022
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Mark R. P. THOMAS, Richard J. CARTWRIGHT
  • Publication number: 20220345820
    Abstract: An audio session management method for an audio environment having multiple audio devices may involve receiving, from a first device implementing a first application and by a device implementing an audio session manager, a first route initiation request to initiate a first route for a first audio session. The first route initiation request may indicate a first audio source and a first audio environment destination. The first audio environment destination may correspond with at least a first person in the audio environment, but in some instances will not indicate an audio device. The method may involve establishing a first route corresponding to the first route initiation request. Establishing the first route may involve determining a first location of at least the first person in the audio environment, determining at least one audio device for a first stage of the first audio session and initiating or scheduling the first audio session.
    Type: Application
    Filed: July 27, 2020
    Publication date: October 27, 2022
    Applicants: DOLBY LABORATORIES LICENSING CORPORATION, DOLBY INTERNATIONAL AB
    Inventors: Glenn N. DICKINS, Richard J. CARTWRIGHT, David GUNAWAN, Christopher Graham HINES, Mark R. P. THOMAS, Alan J. SEEFELDT, Joshua B. LANDO, Carlos Eduardo Medaglia DYONISIO, Daniel ARTEAGA
  • Publication number: 20220335937
    Abstract: A method for estimating a user's location in an environment may involve receiving output signals from each microphone of a plurality of microphones in the environment. At least two microphones of the plurality of microphones may be included in separate devices at separate locations in the environment and the output signals may correspond to a current utterance of a user. The method may involve determining multiple current acoustic features from the output signals of each microphone and applying a classifier to the multiple current acoustic features. Applying the classifier may involve applying a model trained on previously-determined acoustic features derived from a plurality of previous utterances made by the user in a plurality of user zones in the environment. The method may involve determining, based at least in part on output from the classifier, an estimate of the user zone in which the user is currently located.
    Type: Application
    Filed: July 28, 2020
    Publication date: October 20, 2022
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Mark R. P. THOMAS, Richard J. CARTWRIGHT
  • Publication number: 20220270601
    Abstract: A method may involve receiving output signals from each microphone of a plurality of microphones in the environment, each of the plurality of microphones residing in a microphone location of the environment, the output signals corresponding to an utterance of a person. The method may involve determining, based at least in part on the output signals, a zone within the environment that has at least a threshold probability of including the person's location and generating a plurality of spatially-varying attentiveness signals within the zone. Each attentiveness signal may be generated by a device located within the zone. Each attentiveness signal may indicate that a corresponding device is in an operating mode in which the corresponding device is awaiting a command and may indicate a relevance metric of the corresponding device.
    Type: Application
    Filed: July 30, 2020
    Publication date: August 25, 2022
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Christopher Graham HINES, Rowan James KATEKAR, Glenn N. DICKINS, Richard J. CARTWRIGHT, Jeremiha Emile DOUGLAS, Mark R.P. THOMAS
  • Publication number: 20220270625
    Abstract: The present disclosure relates to the field of audio enhancement, and in particular to methods, devices and software for supervised training of a machine learning model, MLM, the MLM trained to enhance a degraded audio signal by calculating gains to be applied to frequency bands of the degraded audio signal. The present disclosure further relates to methods, devices and software for use of such a trained MLM.
    Type: Application
    Filed: July 30, 2020
    Publication date: August 25, 2022
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Jia Dai, Kai Li, Richard J. Cartwright
  • Publication number: 20220254332
    Abstract: A feature vector may be extracted from each frame of input digitized microphone audio data. The feature vector may include a power value for each frequency band of a plurality of frequency bands. A feature history data structure, including a plurality of feature vectors, may be formed. A normalized feature set that includes a normalized feature data structure may be produced by determining normalized power values for a plurality of frequency bands of each feature vector of the feature history data structure. A signal recognition or modification process may be based, at least in part, on the normalized feature data structure.
    Type: Application
    Filed: July 25, 2020
    Publication date: August 11, 2022
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventor: Richard J. Cartwright
  • Publication number: 20220124128
    Abstract: An apparatus and method relating to use of a physical writing surface (132) during a videoconference or presentation. Snapshots of a whiteboard (132) are identified by applying a difference measure to the video data (e.g., as a way of comparing frames at different times). Audio captured by a microphone may be processed to generate textual data, wherein a portion of the textual data is associated with each snapshot. The writing surface may be identified (enrolled) using gestures. Image processing techniques may be used to transform views of a writing surface.
    Type: Application
    Filed: January 14, 2020
    Publication date: April 21, 2022
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Timothy Alan PORT, Richard J. CARTWRIGHT
  • Publication number: 20220030370
    Abstract: A computer implemented system for rendering captured audio soundfields to a listener comprises apparatus to deliver the audio soundfields to the listener. The delivery apparatus delivers the audio soundfields to the listener with first and second audio elements perceived by the listener as emanating from first and second virtual source locations, respectively, and with the first audio element and/or the second audio element delivered to the listener from a third virtual source location. The first virtual source location and the second virtual source location are perceived by the listener as being located to the front of the listener, and the third virtual source location is located to the rear or the side of the listener.
    Type: Application
    Filed: August 9, 2021
    Publication date: January 27, 2022
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Richard J. CARTWRIGHT, David S. MCGRATH, Glenn N. DICKINS
  • Patent number: 11115541
    Abstract: Teleconference audio data including a plurality of individual uplink data packet streams, may be received during a teleconference. Each uplink data packet stream may corresponding to a telephone endpoint used by one or more teleconference participants. The teleconference audio data may be analyzed to determine a plurality of suppressive gain coefficients, which may be applied to first instances of the teleconference audio data during the teleconference, to produce first gain-suppressed audio data provided to the telephone endpoints during the teleconference. Second instances of the teleconference audio data, as well as gain coefficient data corresponding to the plurality of suppressive gain coefficients, may be sent to a memory system as individual uplink data packet streams. The second instances of the teleconference audio data may be less gain-suppressed than the first gain-suppressed audio data.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: September 7, 2021
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Glenn N. Dickins, Richard J. Cartwright
  • Patent number: 11089421
    Abstract: A computer implemented system for rendering captured audio soundfields to a listener comprises apparatus to deliver the audio soundfields to the listener. The delivery apparatus delivers the audio soundfields to the listener with first and second audio elements perceived by the listener as emanating from first and second virtual source locations, respectively, and with the first audio element and/or the second audio element delivered to the listener from a third virtual source location. The first virtual source location and the second virtual source location are perceived by the listener as being located to the front of the listener, and the third virtual source location is located to the rear or the side of the listener.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 10, 2021
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Richard J. Cartwright, David S. McGrath, Glenn N. Dickins
  • Patent number: 11076052
    Abstract: Various disclosed implementations involve processing and/or playback of a recording of a conference involving a plurality of conference participants. Some implementations disclosed herein involve receiving audio data corresponding to a recording of at least one conference involving a plurality of conference participants. In some examples, only a portion of the received audio data will be selected as playback audio data. The selection process may involve a topic selection process, a talkspurt filtering process and/or an acoustic feature selection process. Some examples involve receiving an indication of a target playback time duration. Selecting the portion of audio data may involve making a time duration of the playback audio data within a threshold time difference of the target playback time duration.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: July 27, 2021
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Richard J. Cartwright, Xuejing Sun