Patents by Inventor Richard L. Baron

Richard L. Baron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160084707
    Abstract: A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 24, 2016
    Inventors: David C. Scott, Alexander Ksendzov, Warren P. George, Richard L. Baron, James A. Smith, Abdullah S. Aljabri, Joel M. Steinkraus, Rudi M. Bendig, Douglas C. Hofmann
  • Patent number: 8603285
    Abstract: Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: December 10, 2013
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Richard L. Baron
  • Publication number: 20100297435
    Abstract: Nanotubes and related nanofabrication processes are described where wafer-scale approaches have been developed. The described processes can be used to produce single, vertically aligned tubes integrated into 3D nano-scale architectures. Moreover, fabrication processes to generate 3D nanoarchitectures are also described.
    Type: Application
    Filed: January 26, 2010
    Publication date: November 25, 2010
    Inventors: Anupama B. KAUL, Krikor G. Megerian, Paul A. Von Allmen, Richard L. Baron
  • Patent number: 7446044
    Abstract: Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 4, 2008
    Assignee: California Institute of Technology
    Inventors: Anupama B. Kaul, Eric W. Wong, Richard L. Baron, Larry Epp
  • Publication number: 20080233744
    Abstract: Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to electrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.
    Type: Application
    Filed: September 19, 2006
    Publication date: September 25, 2008
    Applicant: California Institute of Technology
    Inventors: Anupama B. Kaul, Eric W. Wong, Richard L. Baron, Larry Epp