Patents by Inventor Richard L. Duesterberg

Richard L. Duesterberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9453967
    Abstract: Fiber burning and/or overheating of the fiber feedthrough in high-power laser modules, which may cause catastrophic and/or collateral damage, may be addressed by providing an optical fiber assembly designed to withstand overheating due to errant high power laser light that is directed toward the input core of a fiber but may be at least partially misaligned. The optical fiber may be secured within a mount having a passageway such that the end face of the optical fiber extends past an opening of the passageway to a focal plane of the incident light. The end of the optical fiber may include a section that has a reduced or absent cladding layer (e.g., etched to form a tapered cladding region) so as to reduce the amount of light captured by the cladding and/or to leak the light out quickly.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 27, 2016
    Assignee: Lumentum Operations LLC
    Inventors: Richard L. Duesterberg, Yan Xiao
  • Publication number: 20160109656
    Abstract: Fiber burning and/or overheating of the fiber feedthrough in high-power laser modules, which may cause catastrophic and/or collateral damage, may be addressed by providing an optical fiber assembly designed to withstand overheating due to errant high power laser light that is directed toward the input core of a fiber but may be at least partially misaligned. The optical fiber may be secured within a mount having a passageway such that the end face of the optical fiber extends past an opening of the passageway to a focal plane of the incident light. The end of the optical fiber may include a section that has a reduced or absent cladding layer (e.g., etched to form a tapered cladding region) so as to reduce the amount of light captured by the cladding and/or to leak the light out quickly.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Richard L. Duesterberg, Lei Xu, Yan Xiao
  • Patent number: 9036678
    Abstract: A fiber coupled semiconductor device and a method of manufacturing of such a device are disclosed. The method provides an improved stability of optical coupling during assembly of the device, whereby a higher optical power levels and higher overall efficiency of the fiber coupled device can be achieved. The improvement is achieved by attaching the optical fiber to a vertical mounting surface of a fiber mount. The platform holding the semiconductor chip and the optical fiber can be mounted onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Optionally, attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 19, 2015
    Assignee: JDS Uniphase Corporation
    Inventors: Reddy Raju, Richard L. Duesterberg, Jay A. Skidmore, Prasad Yalamanchili, Xiangdong Qiu
  • Patent number: 8475056
    Abstract: A fiber coupled semiconductor device having an improved optical stability with respect to temperature variation is disclosed. The stability improvement is achieved by placing the platform holding the semiconductor chip and the optical fiber onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Attaching the optical fiber to a vertical mounting surface of a fiber mount, and additionally attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 2, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Prasad Yalamanchili, Xiangdong Qiu, Reddy Raju, Jay A. Skidmore, Michael Au, Laura Zavala, Richard L. Duesterberg
  • Patent number: 8437086
    Abstract: The invention relates to sources of optical radiation wherein polarized radiation from first and second rows of light emitters is first collimated and combined into two combined beam using first and second rows of collimating and beam re-directing elements, respectively, and then polarization multiplexed to form a polarization-multiplexed output beam. In order to reduce the footprint, emitters of the first and second emitter rows are disposed in an interleaved, staggered arrangement, and the second row of collimating and beam re-directing elements is disposed in a space between the first emitter row and the first row of collimating and beam re-directing elements.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 7, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Jihua Du, James Yonghong Guo, Lei Xu, Richard L. Duesterberg, Jay A. Skidmore
  • Patent number: 8427749
    Abstract: The invention relates to sources of optical radiation wherein polarized radiation from first and second rows of light emitters is first collimated and combined into two combined beam using first and second rows of collimating and beam re-directing elements, respectively, and then polarization multiplexed to form a polarization-multiplexed output beam. In order to reduce the footprint, emitters of the first and second emitter rows are disposed in an interleaved, staggered arrangement, and the second row of collimating and beam re-directing elements is disposed in a space between the first emitter row and the first row of collimating and beam re-directing elements.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 23, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Jihua Du, James Yonghong Guo, Lei Xu, Richard L. Duesterberg, Jay A. Skidmore
  • Publication number: 20120002293
    Abstract: The invention relates to sources of optical radiation wherein polarized radiation from first and second rows of light emitters is first collimated and combined into two combined beam using first and second rows of collimating and beam re-directing elements, respectively, and then polarization multiplexed to form a polarization-multiplexed output beam. In order to reduce the footprint, emitters of the first and second emitter rows are disposed in an interleaved, staggered arrangement, and the second row of collimating and beam re-directing elements is disposed in a space between the first emitter row and the first row of collimating and beam re-directing elements.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Inventors: Jihua Du, James Yonghong Guo, Lei Xu, Richard L. Duesterberg, Jay A. Skidmore
  • Publication number: 20120002395
    Abstract: The invention relates to sources of optical radiation wherein polarized radiation from first and second rows of light emitters is first collimated and combined into two combined beam using first and second rows of collimating and beam re-directing elements, respectively, and then polarization multiplexed to form a polarization-multiplexed output beam. In order to reduce the footprint, emitters of the first and second emitter rows are disposed in an interleaved, staggered arrangement, and the second row of collimating and beam re-directing elements is disposed in a space between the first emitter row and the first row of collimating and beam re-directing elements.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 5, 2012
    Applicant: JDS Uniphase Corporation
    Inventors: Jihua Du, James Yonghong Guo, Lei Xu, Richard L. Duesterberg, Jay A. Skidmore
  • Publication number: 20110026877
    Abstract: A fiber coupled semiconductor device having an improved optical stability with respect to temperature variation is disclosed. The stability improvement is achieved by placing the platform holding the semiconductor chip and the optical fiber onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Attaching the optical fiber to a vertical mounting surface of a fiber mount, and additionally attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.
    Type: Application
    Filed: July 26, 2010
    Publication date: February 3, 2011
    Inventors: Prasad YALAMANCHILI, Xiangdong QIU, Reddy RAJU, Jay A. SKIDMORE, Michael AU, Laura ZAVALA, Richard L. DUESTERBERG
  • Publication number: 20110026558
    Abstract: A fiber coupled semiconductor device and a method of manufacturing of such a device are disclosed. The method provides an improved stability of optical coupling during assembly of the device, whereby a higher optical power levels and higher overall efficiency of the fiber coupled device can be achieved. The improvement is achieved by attaching the optical fiber to a vertical mounting surface of a fiber mount. The platform holding the semiconductor chip and the optical fiber can be mounted onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Optionally, attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: JDS Uniphase Corporation
    Inventors: Reddy RAJU, Richard L. Duesterberg, Jay A. Skidmore, Prasad Yalamanchili, Xiangdong Qiu
  • Patent number: 7512306
    Abstract: The invention provides a fiber pigtail assembly wherein a polarization maintaining fiber is soldered directly to a mounting pad without a sleeve or a ferrule therebetween. A portion of the polarization maintaining fiber near a fiber end is embedded in a vertical slow axis orientation within an asymmetrical solder ball having a flat portion for adhering to the mounting pad. The vertical slow axis orientation of the polarization maintaining fiber within the solder ball enhances power stability and polarization extinction ratio properties of optical modules utilizing the invention.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: March 31, 2009
    Assignee: JDS Uniphase Corporation
    Inventors: Richard L. Duesterberg, Jay A. Skidmore, Marc K. Von Gunten, Nicolas Guerin
  • Publication number: 20080212916
    Abstract: The invention provides a fiber pigtail assembly wherein a polarization maintaining fiber is soldered directly to a mounting pad without a sleeve or a ferrule therebetween. A portion of the polarization maintaining fiber near a fiber end is embedded in a vertical slow axis orientation within an asymmetrical solder ball having a flat portion for adhering to the mounting pad. The vertical slow axis orientation of the polarization maintaining fiber within the solder ball enhances power stability and polarization extinction ratio properties of optical modules utilizing the invention.
    Type: Application
    Filed: December 26, 2007
    Publication date: September 4, 2008
    Applicant: JDS Uniphase Corporation, Sate of Incorporation Delaware
    Inventors: Richard L. Duesterberg, Jay A. Skidmore, Marc K. Von Gunten, Nicolas Guerin
  • Patent number: 6969205
    Abstract: A fiber tail assembly (FTA) with a micro-lens formed in the fiber tip is used to couple the laser light out of the package and along the fiber. The FTA is soldered at two points where metallized bands are deposited on the fiber pigtail, one at a fiber mount near the diode where it can be soldered into alignment with the laser diode, and two at the snout which forms a feed through the housing and seal for the package. Typically, the FTA is metallized along its entire length within the package. In this invention the two-metallized bands are separated by a region that is unmetallized.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: November 29, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Richard L. Duesterberg, Edmund L. Wolak, Marc K. Von Gunten, Nina Morozova, Donald C. Hargreaves, Prasad Yalamanchili, Hilary Clarke, Jay A. Skidmore, Lei Xu, Christopher L. Hart, William Bardy, Jeffrey Zack, Kuochou Tai
  • Publication number: 20030161379
    Abstract: The invention provides a laser package having a single-mode laser diode for emitting light; a single-mode optical fiber comprising an uncoated microlens formed on an input end of said single-mode optical fiber, the microlens optically coupled to the laser diode for receiving the light, the microlens being constructed so as to reduce a level of back reflection into the laser diode so as not to disturb an operation of the laser diode, wherein a center axis of the single-mode optical fiber is co-planar with an optical axis of the laser diode; and a grating formed in the single-mode optical fiber for providing feedback to the laser diode to stabilize the emitted light from the laser diode. The single-mode optical fiber can include a length of polarization maintaining fiber between the grating and the single-mode laser diode.
    Type: Application
    Filed: December 20, 2002
    Publication date: August 28, 2003
    Applicant: JDS Uniphase Corporation
    Inventors: Edmund L. Wolak, Nina Morozova, Jay A. Skidmore, Ning Yao Fan, Jo S. Major, Robert J. Lang, Garnet Scott Luick, Donald C. Hargreaves, Vincent V. Wong, Richard L. Duesterberg