Patents by Inventor Richard Lee NUCCITELLI

Richard Lee NUCCITELLI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11051871
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: July 6, 2021
    Assignee: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Publication number: 20200315687
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Patent number: 10729724
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 4, 2020
    Assignee: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Patent number: 10695127
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: June 30, 2020
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Publication number: 20190350971
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Application
    Filed: July 11, 2019
    Publication date: November 21, 2019
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Patent number: 10391125
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: August 27, 2019
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Publication number: 20190239949
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Patent number: 10307207
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 4, 2019
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Publication number: 20190160283
    Abstract: In one aspect, methods of treating human papillomavirus (HPV)-associated growths are provided in which nano-pulse stimulation is applied at the site of a cancer. In another aspect, devices and computer systems for delivering nano-pulse stimulation for the treatment of HPV-associated growths are provided.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Darrin Robert Uecker
  • Publication number: 20190022141
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on a size and type of the tumor to stimulate an immune response against the tumor and other tumors in the subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Patent number: 10137152
    Abstract: A subject is inoculated from a disease by exposing a biopsy of a tumor or other abnormal growth to a nanosecond pulsed electric field (nsPEF). A sufficient treatment can be confirmed by detecting calreticulin on the tumor cell membranes, which indicates apoptosis occurring in the tumor cells. Treated tumor cells from the biopsy are then reintroduced into the subject. The calreticulin-exhibiting tumor cells activate the subject's immune system against the tumor, and any other like tumors in the body, and effectively vaccinates the subject against the disease. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. The immune response may be measured at a later time. Specific electrical characteristics of the nsPEF treatments can be based on the type and/or strength of the tumor.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: November 27, 2018
    Assignee: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Publication number: 20180318004
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Patent number: 10058383
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: August 28, 2018
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Publication number: 20180153937
    Abstract: A subject is inoculated from a disease by exposing a biopsy of a tumor or other abnormal growth to a nanosecond pulsed electric field (nsPEF). A sufficient treatment can be confirmed by detecting calreticulin on the tumor cell membranes, which indicates apoptosis occurring in the tumor cells. Treated tumor cells from the biopsy are then reintroduced into the subject. The calreticulin-exhibiting tumor cells activate the subject's immune system against the tumor, and any other like tumors in the body, and effectively vaccinates the subject against the disease. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. The immune response may be measured at a later time. Specific electrical characteristics of the nsPEF treatments can be based on the type and/or strength of the tumor.
    Type: Application
    Filed: January 17, 2018
    Publication date: June 7, 2018
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Publication number: 20170360504
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Application
    Filed: August 7, 2017
    Publication date: December 21, 2017
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Patent number: 9724155
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 8, 2017
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Publication number: 20170216353
    Abstract: A subject is inoculated from a disease by exposing a biopsy of a tumor or other abnormal growth to a nanosecond pulsed electric field (nsPEF). A sufficient treatment can be confirmed by detecting calreticulin on the tumor cell membranes, which indicates apoptosis occurring in the tumor cells. Treated tumor cells from the biopsy are then reintroduced into the subject. The calreticulin-exhibiting tumor cells activate the subject's immune system against the tumor, and any other like tumors in the body, and effectively vaccinates the subject against the disease. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. The immune response may be measured at a later time. Specific electrical characteristics of the nsPEF treatments can be based on the type and/or strength of the tumor.
    Type: Application
    Filed: April 11, 2017
    Publication date: August 3, 2017
    Applicant: Pulse Biosciences, Inc.
    Inventors: Richard Lee Nuccitelli, Pamela S. Nuccitelli, Joanne Lum, Kaying Lui, Brian G. Athos, Mark P. Kreis, Zachary R. Mallon, Jon Berridge
  • Patent number: 9656066
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on size and type of a tumor to stimulate an immune response against the tumor and other tumors in a subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 23, 2017
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Richard Lee Nuccitelli, Pamela Nuccitelli, Joanne Lum, Kaying Lui, Brian Athos, Mark Kreis, Zachary Mallon, Jon Berridge
  • Publication number: 20160157932
    Abstract: Techniques for treating a tumor and vaccinating against cancer are described. The techniques include treating the tumor by positioning electrodes over an interface between the tumor and non-tumor tissue and applying sub-microsecond pulsed electric fields. The positioning is facilitated by an imaginary contour line of a threshold value of the electric field. In an example, the imaginary contour line is overlaid over images that include the tumor such that the electrodes are properly positioned over the tumor. The techniques also include vaccinating against cancer by passing sub-microsecond pulsed electric fields through tumor cells of a subject sufficient to cause the tumor cells to express calreticulin on surface membranes. The tumor cells are extracted and introduced with the expressed calreticulin into the subject or another subject, thereby providing a vaccination.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 9, 2016
    Applicant: Electroblate, Inc.
    Inventors: Richard Lee Nuccitelli, Jon Casey Berridge, Zachary Mallon, Mark Kreis, Brian Athos, Pamela Nuccitelli
  • Publication number: 20150320999
    Abstract: Nanosecond pulsed electric field (nsPEF) treatments of a tumor are adjusted based on size and type of a tumor to stimulate an immune response against the tumor and other tumors in a subject. Calreticulin expression on tumor cells can be detected to confirm treatment. An immune response biomarker can be measured, and further nsPEF treatments can be performed if needed to stimulate or further stimulate the immune response. Cancers that have metastasized may be treated by directly treating a tumor that is most accessible. The treatment can be combined with CD47-blocking antibodies, doxorubicin, CTLA-4-blocking antibodies, and/or PD-1-blocking antibodies. Electrical characteristics of nsPEF treatments can be based on the size, type, and/or strength of tumors and/or a quantity of tumors in the subject.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 12, 2015
    Applicant: NanoBlate Corp.
    Inventors: Richard Lee Nuccitelli, Pamela Nuccitelli, Joanne Lum, Kaying Lui, Brian Athos, Mark Kreis, Zachary Mallon, Jon Berridge