Patents by Inventor Richard M. Dickinson

Richard M. Dickinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4187506
    Abstract: A system in which the characteristics of a microwave power transmission beam are controlled in accordance with power distribution profiles altered due to the detected presence or entrance of an object into the beam which causes changes that are perceived in various received, reflected and scattered power distribution profiles resulting over various receiving elements of the system. An analysis of these changes is made, the results of which are used to reshape, dim or douse the power beam in accordance with predetermined criteria. Additionally, a "FAIL SAFE" condition is obtained by employing a beam penetration tester, whose function is to repeatedly test the correct performance of the beam intrusion detecting scheme by presenting a minimal threshold scattering or absorbing cross section while crossing the power beam. If the beam penetration tester is undetected by the beam safety system, then the beam control is preconditioned to turn off the power beam.
    Type: Grant
    Filed: October 16, 1978
    Date of Patent: February 5, 1980
    Inventors: Robert A. Administrator of the National Aeronautics and Space Administration, with respect to an invention of Frosch, Richard M. Dickinson
  • Patent number: 4088999
    Abstract: In wireless power transmission systems, in order to provide maximum possible efficiency in the transfer of power, the receiving element of the system must intercept the greatest possible portion of the transmitted energy beam. By having a planar array of receiver elements that are symmetrically located about a physical center, it becomes possible to determine the location on the array of the center of energy of the incident beam. This information is obtained as follows. Sum the output energy of all the receiver elements to the right and left of the vertical center of the array. Determine the difference and sum of these two amounts. Divide the difference by the sum. The result is an indication of the degrees that the center of the incident beam is off in azimuth. Sum the output energy of all the receiver elements above and below the horizontal center of the array. Determine the difference and sum of these two amounts. Divide the difference by the sum.
    Type: Grant
    Filed: May 21, 1976
    Date of Patent: May 9, 1978
    Inventors: James C. Administrator of the National Aeronautics and Space Administration, with respect to an invention of Fletcher, Richard M. Dickinson
  • Patent number: 4079268
    Abstract: A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide DC current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.
    Type: Grant
    Filed: October 6, 1976
    Date of Patent: March 14, 1978
    Inventors: James C. Administrator of the National Aeronautics and Space Administration with respect to an invention of Fletcher, Richard M. Dickinson