Patents by Inventor Richard P. Schneider

Richard P. Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230390092
    Abstract: Certain configurations of removable oral devices are described. In some instances, the removable oral device includes a palatal element. In certain configurations, the palatal element may comprise a variable hardness at different areas, e.g., edges can be softer than other areas of the removable oral device. In other instances, the removable oral device may comprise two or more individual palatal elements which together can form the palatal element and permit user adjustment of the oral volume. Various materials used in the palatal element are described. Sensors and other on-board devices are also described.
    Type: Application
    Filed: January 30, 2023
    Publication date: December 7, 2023
    Inventors: William H Longley, Richard P Schneider, Anthony R Tremaglio, Marc M Gibeley
  • Publication number: 20230387350
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer, and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Application
    Filed: March 21, 2023
    Publication date: November 30, 2023
    Inventors: Fariba DANESH, Richard P. SCHNEIDER, Fan REN, Michael JANSEN, Nathan GARDNER
  • Patent number: 11710805
    Abstract: A method of forming a light emitting device includes forming a semiconductor light emitting diode, forming a metal layer stack including a first metal layer and a second metal layer on the light emitting diode, and oxidizing the metal layer stack to form transparent conductive layer including at least one conductive metal oxide.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: July 25, 2023
    Assignee: NANOSYS, INC.
    Inventors: Fariba Danesh, Tsun Lau, Richard P. Schneider, Jr., Michael Jansen, Max Batres
  • Patent number: 11611018
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer. and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: March 21, 2023
    Assignee: NANOSYS, INC.
    Inventors: Fariba Danesh, Richard P. Schneider, Jr., Fan Ren, Michael Jansen, Nathan Gardner
  • Patent number: 11564821
    Abstract: Certain configurations of removable oral devices are described. In some instances, the removable oral device includes a palatal element. In certain configurations, the palatal element may comprise a variable hardness at different areas, e.g., edges can be softer than other areas of the removable oral device. In other instances, the removable oral device may comprise two or more individual palatal elements which together can form the palatal element and permit user adjustment of the oral volume. Various materials used in the palatal element are described. Sensors and other on-board devices are also described.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: January 31, 2023
    Assignee: SCIENTIFIC INTAKE LIMITED CO.
    Inventors: William H Longley, Richard P Schneider, Anthony R Tremaglio, Marc M Gibeley
  • Publication number: 20220202602
    Abstract: Certain configurations of methods of using removable oral devices are described. In some examples, a removable oral device can be used in weight loss, weight management, athletic performance or in other applications to monitor or alter a user's behavior or monitor one or more physiological conditions. If desired, the removable oral device can be used in combination with a storage case, a mobile device, application software or other components.
    Type: Application
    Filed: October 6, 2021
    Publication date: June 30, 2022
    Inventors: William H. Longley, Richard P. Schneider, Anthony R. Tremaglio, Marc M. Gibeley
  • Publication number: 20220151810
    Abstract: Certain configurations of removable oral devices are described. In some instances, the removable oral device includes a palatal element. In certain configurations, the palatal element may comprise a variable hardness at different areas, e.g., edges can be softer than other areas of the removable oral device. In other instances, the removable oral device may comprise two or more individual palatal elements which together can form the palatal element and permit user adjustment of the oral volume. Various materials used in the palatal element are described. Sensors and other on-board devices are also described.
    Type: Application
    Filed: August 26, 2021
    Publication date: May 19, 2022
    Inventors: William H. Longley, Richard P. Schneider, Anthony R. Tremaglio, Marc M. Gibeley
  • Publication number: 20220142751
    Abstract: Certain configurations of methods which can be used to produce removable oral devices are described. In some instances, the removable oral devices can be produced using molding, digital scanning, on demand printing and/or other processes. In certain examples, the produced removable oral device can be used in weight management, athletic performance or in other applications.
    Type: Application
    Filed: June 21, 2021
    Publication date: May 12, 2022
    Inventors: William H. Longley, Richard P. Schneider, Anthony R. Tremaglio, Marc M. Gibeley
  • Patent number: 11257983
    Abstract: A light emitting device, such as an LED, is formed by forming a plurality of semiconductor nanostructures having a doping of a first conductivity type through, and over, a growth mask layer overlying a doped compound semiconductor layer. Each of the plurality of semiconductor nanostructures includes a nanofrustum including a bottom surface, a top surface, tapered planar sidewalls, and a height that is less than a maximum lateral dimension of the top surface, and a pillar portion contacting the bottom surface of the nanofrustum and located within a respective one of the openings through the growth mask layer. A plurality of active regions on the nanofrustums. A second conductivity type semiconductor material layer is formed on each of the plurality of active regions.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 22, 2022
    Assignee: NANOSYS, INC.
    Inventors: Richard P. Schneider, Jr., Benjamin Leung, Fariba Danesh, Zulal Tezcan Ozel, Miao-Chan Tsai
  • Publication number: 20210066550
    Abstract: A method of forming a light emitting device includes forming a semiconductor light emitting diode, forming a metal layer stack including a first metal layer and a second metal layer on the light emitting diode, and oxidizing the metal layer stack to form transparent conductive layer including at least one conductive metal oxide.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 4, 2021
    Inventors: Fariba DANESH, Tsun LAU, Richard P. SCHNEIDER, JR., Michael JANSEN, Max BATRES
  • Publication number: 20200403121
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer. and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 24, 2020
    Inventors: Fariba Danesh, Richard P. Schneider, JR., Fan Ren, Michael Jansen, Nathan Gardner
  • Patent number: 10804436
    Abstract: A method of forming a light emitting device includes forming a semiconductor light emitting diode, forming a metal layer stack including a first metal layer and a second metal layer on the light emitting diode, and oxidizing the metal layer stack to form transparent conductive layer including at least one conductive metal oxide.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 13, 2020
    Assignee: GLO AB
    Inventors: Fariba Danesh, Tsun Lau, Richard P. Schneider, Jr., Michael Jansen, Max Batres
  • Patent number: 10797202
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: October 6, 2020
    Assignee: GLO AB
    Inventors: Fariba Danesh, Richard P. Schneider, Jr., Fan Ren, Michael Jansen, Nathan Gardner
  • Publication number: 20200274029
    Abstract: A light emitting device, such as an LED, is formed by forming a plurality of semiconductor nanostructures having a doping of a first conductivity type through, and over, a growth mask layer overlying a doped compound semiconductor layer. Each of the plurality of semiconductor nanostructures includes a nanofrustum including a bottom surface, a top surface, tapered planar sidewalls, and a height that is less than a maximum lateral dimension of the top surface, and a pillar portion contacting the bottom surface of the nanofrustum and located within a respective one of the openings through the growth mask layer. A plurality of active regions on the nanofrustums. A second conductivity type semiconductor material layer is formed on each of the plurality of active regions.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 27, 2020
    Inventors: Richard P. Schneider, JR., Benjamin Leung, Fariba Danesh, Zulal Tezcan Ozel, Miao-Chan Tsai
  • Publication number: 20200119229
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer. and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Fariba Danesh, Richard P. Schneider, JR., Fan Ren, Michael Jansen, Nathan Gardner
  • Patent number: 10566499
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer. and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: February 18, 2020
    Assignee: GLO AB
    Inventors: Fariba Danesh, Richard P. Schneider, Jr., Fan Ren, Michael Jansen, Nathan Gardner
  • Publication number: 20190341525
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer. and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Fariba Danesh, Richard P. Schneider, Jr., Fan Ren, Michael Jansen, Nathan Gardner
  • Patent number: 10418499
    Abstract: A light emitting device, such as an LED, is formed by forming clusters of semiconductor nanostructures separated by inter-cluster regions that lack semiconductor nanostructures over a substrate, where each semiconductor nanostructure includes a nanostructure core having a doping of a first conductivity type and an active shell formed around the nanostructure core, and selectively depositing a second conductivity type semiconductor material layer having a doping of a second conductivity type on the clusters of semiconductor nanostructures. Portions of the selectively deposited second conductivity type semiconductor material layer form a continuous material layer in each cluster of semiconductor nanostructures, and the second conductivity type semiconductor material layer is not deposited in the inter-cluster regions.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 17, 2019
    Assignee: GLO AB
    Inventors: Richard P. Schneider, Benjamin Leung
  • Patent number: 10361341
    Abstract: A red-light emitting diode includes an n-doped portion, a p-doped portion, and a light emitting region located between the n-doped portion and a p-doped portion. The light emitting region includes a light-emitting indium gallium nitride layer emitting light at a peak wavelength between 600 and 750 nm under electrical bias thereacross, an aluminum gallium nitride layer located on the light-emitting indium gallium nitride layer and a GaN barrier layer located on the aluminum gallium nitride layer.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 23, 2019
    Assignee: GLO AB
    Inventors: Fariba Danesh, Richard P. Schneider, Jr., Fan Ren, Michael Jansen, Nathan Gardner
  • Publication number: 20190109262
    Abstract: A method of forming a light emitting device includes forming a semiconductor light emitting diode, forming a metal layer stack including a first metal layer and a second metal layer on the light emitting diode, and oxidizing the metal layer stack to form transparent conductive layer including at least one conductive metal oxide.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Fariba DANESH, Tsun LAU, Richard P. SCHNEIDER, JR., Michael JANSEN