Patents by Inventor Richard Prosser

Richard Prosser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11174163
    Abstract: A method for powering an internal combustion engine or other device powered by combustion includes a step of feeding a first stream of biogas to a catalytic reforming reactor in which the first stream contacts oxygen to form a first product stream comprising synthesis gas. The first product stream is combined with a second stream of biogas to form a second product stream. The second product stream is provided to a device powered by combustion. A system implementing the method is also provided.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 16, 2021
    Assignees: University of Southern California, ES Engineering Services, LLC
    Inventors: Theodore Tsotsis, Richard Prosser, Mingyuan Cao, Sasan Dabir
  • Publication number: 20180312400
    Abstract: A method for powering an internal combustion engine or other device powered by combustion includes a step of feeding a first stream of biogas to a catalytic reforming reactor in which the first stream contacts oxygen to form a first product stream comprising synthesis gas. The first product stream is combined with a second stream of biogas to form a second product stream. The second product stream is provided to a device powered by combustion. A system implementing the method is also provided.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 1, 2018
    Inventors: THEODORE TSOTSIS, RICHARD PROSSER, MINGYUAN CAO, SASAN DABIR
  • Patent number: 9700747
    Abstract: Systems and methods for removal of gas phase contaminants may utilize catalytic oxidation. For example, a method may include passing a gas that includes a gas phase contaminant through a catalytic membrane reactor at a temperature of about 150° C. to about 300° C., wherein the catalytic membrane reactor includes a bundle of tubular inorganic membranes, wherein each of the tubular inorganic membranes comprise a macroporous tubular substrate with an oxidative catalyst and a microporous layer disposed on a bore side of the macroporous tubular substrate, and wherein at least about 50% of the gas flows through the tubular inorganic membranes in a Knudsen flow regime; and oxidizing at least some of the gas phase contaminant with the oxidative catalyst layer, thereby reducing a concentration of the gas phase contaminant in the gas.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 11, 2017
    Inventors: Theodore T. Tsotsis, Fokion Egolfopoulos, Nitin Nair, Richard Prosser, Jyh-Yih Ren, Alireza Divsalar, Mirmohammadyousef Motamedhashemi, Majid Monji
  • Publication number: 20140271419
    Abstract: Systems and methods for removal of gas phase contaminants may utilize catalytic oxidation. For example, a method may include passing a gas that includes a gas phase contaminant through a catalytic membrane reactor at a temperature of about 150° C. to about 300° C., wherein the catalytic membrane reactor includes a bundle of tubular inorganic membranes, wherein each of the tubular inorganic membranes comprise a macroporous tubular substrate with an oxidative catalyst and a microporous layer disposed on a bore side of the macroporous tubular substrate, and wherein at least about 50% of the gas flows through the tubular inorganic membranes in a Knudsen flow regime; and oxidizing at least some of the gas phase contaminant with the oxidative catalyst layer, thereby reducing a concentration of the gas phase contaminant in the gas.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, GC ENVIRONMENTAL, MEDIA AND PROCESS TECHNOLOGY INC.
    Inventors: Theodore T. Tsotsis, Fokion Egolfopoulos, Nitin Nair, Richard Prosser, Jyh-Yih Ren, Paul Liu, Alireza Divsalar, Yousef Motamedhashemi, Majid Monji