Patents by Inventor Richard Reibel

Richard Reibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8322221
    Abstract: A non-contact near field high resolution acoustic imaging system of a sample, the system including an acoustic wave generator generating a plurality of acoustic waves a ultrasonic horn amplifying the waves to an amplitude of between about 20 microns and about 300 microns, and a frequency between about 20 kHz and about 40 khz. The ultrasonic horn further directs the amplified waves to impinge upon the sample. On contact between the waves and the sample, a plurality of transmitted energy is transmitted to the sample, a plurality of longitudinal displacements and surface acoustic wave displacements in the sample are created. An adjustable separation distance lies between the sample and the ultrasonic horn, the distance adjusted to maximize the transmitted energy. The distance is preferably greater than the maximum displacement of the ultrasonic horn, or approximately 0.1 mm.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 4, 2012
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Shamachary Sathish, John T. Welter, Kumar V. Jata, Richard Reibel
  • Patent number: 7716987
    Abstract: A non-contact thermo-elastic property measurement and imaging system and method thereof are described. Acoustic energy is incident on a first surface of a specimen under test. The acoustic energy is converted partially into heat by the specimen, causing a slight increase in the temperature in a region of interaction. The temperature increase is imaged using a high sensitivity infrared camera. Presence of defects (surface and subsurface) in the material modifies the distribution of temperature. An image of temperature distribution can be used for nondestructive testing and evaluation of materials. The temperature change in the specimen caused by acoustic excitation is related to thermal and elastic properties of the material. A measurement of the change in the temperature as a function of the amplitude of incident excitation can be used for direct measurement of thermo-elastic property of the specimen.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: May 18, 2010
    Assignee: University of Dayton
    Inventors: Shamachary Sathish, Richard Reibel, John T. Welter, Charles Buynak
  • Publication number: 20080022775
    Abstract: A non-contact thermo-elastic property measurement and imaging system and method thereof are described. Acoustic energy is incident on a first surface of a specimen under test. The acoustic energy is converted partially into heat by the specimen, causing a slight increase in the temperature in a region of interaction. The temperature increase is imaged using a high sensitivity infrared camera. Presence of defects (surface and subsurface) in the material modifies the distribution of temperature. An image of temperature distribution can be used for nondestructive testing and evaluation of materials. The temperature change in the specimen caused by acoustic excitation is related to thermal and elastic properties of the material. A measurement of the change in the temperature as a function of the amplitude of incident excitation can be used for direct measurement of thermo-elastic property of the specimen.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Applicant: University of Dayton
    Inventors: Shamachary Sathish, Richard Reibel, John T. Welter, Charles Buynak