Patents by Inventor Richard Remo Fontana

Richard Remo Fontana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180311738
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 1, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180305266
    Abstract: An infiltratable material forms a net shape containing a porous network that can be infiltrated with a supplemental material, commonly referred to as an infiltrant, e.g., by heating the infiltrant so that it melts and wicks into the porous network of the net shape. By using additive fabrication technologies to spatially dispose an infiltrant about an infiltratable structure, a composite structure can be created that advantageously controls the amount of infiltrant applied to the infiltratable structure and the spatial distribution of the infiltrant about and/or within the infiltratable structure prior to infiltration.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Michael Andrew Gibson, Brian Daniel Kernan, Nihan Tuncer, Richard Remo Fontana
  • Publication number: 20180304360
    Abstract: A superstructure is fabricated around an object, but physically isolated from the object, with a shape that facilitates robotic handling of the superstructure, along with removal of powder from the object, after a three-dimensional printing process such as binder jetting.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Richard Remo Fontana, Anastasios John Hart, Michael Andrew Gibson
  • Publication number: 20180304370
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180304363
    Abstract: A support structure is fabricated below a printed object to form a structure that prevents or minimizes a drag on a floor while the object shrinks during sintering.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304540
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Publication number: 20180304364
    Abstract: A support structure is formed from a support material below a printed object that shrinks similarly to a build material of the printed object during processing in a furnace.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304369
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180304533
    Abstract: A system and corresponding method to move build material in a three-dimensional (3D) printing system uses a gripper. The gripper is arranged to apply at least two opposing lateral forces to the build material. The at least two opposing lateral forces are applied to the build material, in conjunction with linear motion of the gripper, for at least a portion of a path the build material travels toward an extrusion head.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Richard Burnham, John LaPlante, Aaron Preston, Richard Remo Fontana
  • Publication number: 20180297288
    Abstract: Systems, methods, and apparatus are introduced for controlling an output flow of a build material from an extrusion assembly used for printing a three-dimensional (3D) object. Control of the output flow is based on an input control value that may be a function of a hydraulic capacitance and a hydraulic resistance, representing hydraulic capacitance values and hydraulic resistance values, respectively, associated with the build material, the extrusion assembly, or a combination thereof at one or more locations of the extrusion assembly relative to a melting zone of an extrusion head of the extrusion assembly as well as a target output flow. The input control value enables the output flow to match the target output flow. The hydraulic capacitance and resistance values account for interaction of the build material and a mechanical mechanism of the extrusion assembly driving extrusion of the build material.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 18, 2018
    Inventors: Alexander C. Barbati, Richard Remo Fontana, John LaPlante, Jonah Samuel Myerberg
  • Publication number: 20180237648
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, the ink may include a carrier, supramolecular assemblies of molecules, and nanoparticles of an inorganic material. The supramolecular assemblies may sequester the nanoparticles of the inorganic material from the carrier to facilitate maintaining the nanoparticles in a stable form, providing a shelf-life suitable for transportation and storage of the ink in large-scale commercial operations. The supramolecular assemblies of the molecules may be disrupted during a fabrication process to release the nanoparticles. The nanoparticles may improve strength of the three-dimensional objects being fabricated and, also or instead, may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects (e.g.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson
  • Publication number: 20180229300
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer may be fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Interface layers suitable for manufacture with an additive manufacturing system may resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180162013
    Abstract: Techniques and compositions are disclosed for composite feedstocks with powder/binder systems suitable for three-dimensional printing, such as fused filament fabrication. The composite feedstocks may include a jacket about a core, with at least the core including a powder material suspended in a binder system and the jacket having a hardness or toughness greater than a hardness or toughness of the core for the feedstock. In general, the harder jacket may protect the core from unintended deformation or damage during transportation, storage, or use. For example, the difference in hardness or toughness between the jacket and the core may facilitate gripping the feedstock (e.g., by gear drives or the like) with a higher amount of force than is otherwise applicable if the feedstock were composed of the core alone, without damaging the core, during a fused filament fabrication process or another additive manufacturing process.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Inventors: Ricardo Fulop, Michael Andrew Gibson, Richard Remo Fontana, Animesh Bose, Jonah Samuel Myerberg
  • Publication number: 20180154440
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: January 11, 2018
    Publication date: June 7, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180071825
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 15, 2018
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180050390
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9833839
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 5, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170333994
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 23, 2017
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9815118
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 14, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297104
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. The support structure may be a multi-part support structure to mitigate mold lock or facilitate removal from enclosed spaces.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart