Patents by Inventor Richard Samade

Richard Samade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9278218
    Abstract: A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: March 8, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Edward Karst, Richard Samade, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret
  • Patent number: 9107903
    Abstract: Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: August 18, 2015
    Assignee: PACESETTER, INC.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Annapurna Karicherla, Nirav Dalal, Prashant Dinesh, Richard Samade, John W. Poore
  • Publication number: 20150165199
    Abstract: A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Inventors: Edward Karst, Richard Samade, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret
  • Patent number: 8996109
    Abstract: A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 31, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Edward Karst, Richard Samade, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret
  • Patent number: 8798740
    Abstract: A leadless intra-cardiac medical device (LIMD) includes a housing configured to be implanted entirely within a single local chamber of the heart.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: August 5, 2014
    Assignee: PaceSetter, Inc.
    Inventors: Richard Samade, Edward Karst, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret, Nirav Dalal
  • Publication number: 20140120240
    Abstract: Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: PACESETTER, INC.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Annapurna Karicherla, Nirav Dalal, Prashant Dinesh, Richard Samade, John W. Poore
  • Patent number: 8647675
    Abstract: Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: February 11, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Annapurna Karicherla, Nirav Dalal, Prashant Dinesh, Richard Samade, John W. Poore
  • Patent number: 8634912
    Abstract: A leadless intra-cardiac medical device includes a housing that is configured to be implanted entirely within a single local chamber of the heart. A first electrode is provided on the housing at a first position such that when the housing is implanted in the local chamber, the first electrode engages the local wall tissue at a local activation site within the conduction network of the local chamber. An intra-cardiac extension is coupled to the housing and configured to extend from the local chamber into an adjacent chamber of the heart. A stabilization arm of the intra-cardiac extension engages the adjacent chamber. A second electrode on the intra-cardiac extension engages distal wall tissue at a distal activation site within the conduction network of the adjacent chamber.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: January 21, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Gabriel A. Mouchawar, Xiaoyi Min, John W. Poore, Edward Karst, Richard Samade, Zoltan Somogyi, Didier Theret
  • Publication number: 20140018818
    Abstract: A system for implanting an implantable medical device (IMD) within a patient may include a main handle assembly having proximal and distal ends, a device-connection control handle connected to the proximal end of the main handle assembly, an introducer connected to the distal end of the main handle assembly, and a connection tool extending from the introducer. The connection tool may include a device-engaging member configured to change at least one of shape or orientation to selectively connect to and disconnect from the IMD. The device-connection control handle may be operatively connected to the device-engaging member and the device-connection control handle may be configured to manipulate the device-engaging member between connected and disconnected states by changing the at least one of the shape or orientation.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: PACESETTER, INC.
    Inventors: Zoltan Somogyi, Edward Karst, Gene A. Bornzin, John W. Poore, Richard Samade, Didier Theret
  • Publication number: 20140005605
    Abstract: A coating on at least a portion of an implantable medical device includes a polymer and an agent that inhibits the formation of biofilms. The agent inhibiting the formation of a biofilm includes a quorum sensing inhibitor (QSI), a biofilm dispersing agent (BDA) or both. The agent may also be delivered via an actuator associated with the implantable medical device.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: PACESETTER, INC.
    Inventors: Richard Samade, Prashant Dinesh, Yelena Nabutovsky, Gene A. Bornzin, John W. Poore, Annapurna Karicherla, Nirav Dalal
  • Publication number: 20130325081
    Abstract: A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: PACESETTER, INC.
    Inventors: Edward Karst, Richard Samade, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret
  • Publication number: 20130238085
    Abstract: Disclosed herein is an implantable medical device including an antimicrobial layer. The antimicrobial layer may include a first distinct size of silver nanoparticles, a second distinct size of silver nanoparticles, and a third distinct size of silver nanoparticles. The antimicrobial layer extends over a surface of the implantable medical device, and, in some instances, the surface of the implantable medical device may serve as a substrate on which the antimicrobial layer is deposited.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: PACESETTER, INC.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Annapurna Karicherla, Nirav Dalal, Prashant Dinesh, Richard Samade, John W. Poore
  • Publication number: 20130116738
    Abstract: A leadless intra-cardiac medical device (LIMD) includes a housing configured to be implanted entirely within a single local chamber of the heart.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 9, 2013
    Applicant: PACESETTER, INC.
    Inventors: Richard Samade, Edward Karst, Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Didier Theret, Nirav Dalal
  • Publication number: 20130116741
    Abstract: A leadless intra-cardiac medical device includes a housing that is configured to be implanted entirely within a single local chamber of the heart. A first electrode is provided on the housing at a first position such that when the housing is implanted in the local chamber, the first electrode engages the local wall tissue at a local activation site within the conduction network of the local chamber. An intra-cardiac extension is coupled to the housing and configured to extend from the local chamber into an adjacent chamber of the heart. A stabilization arm of the intra-cardiac extension engages the adjacent chamber. A second electrode on the intra-cardiac extension engages distal wall tissue at a distal activation site within the conduction network of the adjacent chamber.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 9, 2013
    Applicant: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Gabriel A. Mouchawar, Xiaoyi Min, John W. Poore, Edward Karst, Richard Samade, Zoltan Somogyi, Didier Theret