Patents by Inventor Richard Smalley

Richard Smalley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120003629
    Abstract: The present invention includes compositions and methods for selective binding of amino acid oligomers to semiconductor and elemental carbon-containing materials. One form of the present invention is a method for controlling the particle size of the semiconductor or elemental carbon-containing material by interacting an amino acid oligomer that specifically binds the material with solutions that can result in the formation of the material. The same method can be used to control the aspect ratio of the nanocrystal particles of the semiconductor material. Another form of the present invention is a method to create nanowires from the semiconductor or elemental carbon-containing material. Yet another form of the present invention is a biologic scaffold comprising a substrate capable of binding one or more biologic materials, one or more biologic materials attached to the substrate, and one or more elemental carbon-containing molecules attached to one or more biologic materials.
    Type: Application
    Filed: February 8, 2006
    Publication date: January 5, 2012
    Inventors: Angela Belcher, Richard Smalley, Esther Ryan, Seung-Wuk Lee
  • Publication number: 20080063585
    Abstract: This invention relates generally to a fullerene nanotube composition. The fullerene nanotubes may be in the form of a felt, such as a bucky paper. Optionally, the fullerene nanotubes may be derivatized with one or more functional groups. Devices employing the fullerene nanotubes of this invention are also disclosed.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 13, 2008
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20070098621
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: June 13, 2006
    Publication date: May 3, 2007
    Applicant: William Marsh Rice University
    Inventors: John Margrave, Edward Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard Smalley
  • Publication number: 20070065975
    Abstract: The present invention is directed to methods of purifying carbon nanotubes (CNTs). In general, such methods comprise the following steps: (a) preparing an aqueous slurry of impure CNT material; (b) establishing a source of Fe2+ ions in the slurry to provide a catalytic slurry; (c) adding hydrogen peroxide to the catalytic slurry to provide an oxidative slurry, wherein the Fe2+ ions catalyze the production of hydroxyl radicals; and (d) utilizing the hydroxyl radicals in the oxidative slurry to purify the CNT material and provide purified CNTs.
    Type: Application
    Filed: December 28, 2005
    Publication date: March 22, 2007
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Irene Marek, Yuhuang Wang, Robert Hauge, Hongwei Shan
  • Publication number: 20070048209
    Abstract: This invention relates generally to carbon fiber produced from fullerene nanotube arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 fullerene nanotubes in generally parallel orientation.
    Type: Application
    Filed: August 22, 2006
    Publication date: March 1, 2007
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20070043158
    Abstract: This invention relates generally to a method for producing self-assembled objects comprising fullerene nanotubes and compositions thereof. In one embodiment, the present invention involves a three-dimensional structure of derivatized fullerene nanotubes that spontaneously form. It includes several components having multiple derivatives brought together to assemble into the three-dimensional structure. In another embodiment, objects may be obtained by bonding functionally-specific agents (FSAs) to groups of nanotubes, enabling them to form into structures. The bond selectivity of FSAs allow selected nanotubes of a particular size or kind to assemble together and inhibit the assembling of unselected nanotubes that may also be present.
    Type: Application
    Filed: August 22, 2006
    Publication date: February 22, 2007
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20070009421
    Abstract: The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
    Type: Application
    Filed: December 1, 2005
    Publication date: January 11, 2007
    Applicant: William Marsh Rice University
    Inventors: W. Kittrell, Yuhuang Wang, Myung Kim, Robert Hauge, Richard Smalley, Irene Marek
  • Publication number: 20070003470
    Abstract: The present invention concerns a method for growing carbon nanotubes using a catalyst system that preferentially promotes the growth of single- and double-wall carbon nanotubes, rather than larger multi-walled carbon nanotubes. Ropes of the carbon nanotubes are formed that comprise single-wall and/or double-wall carbon nanotubes.
    Type: Application
    Filed: December 20, 2002
    Publication date: January 4, 2007
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Jason Hafner, Daniel Colbert, Ken Smith
  • Publication number: 20060275791
    Abstract: The present invention includes compositions and methods for selective binding of amino acid oligomers to semiconductor and elemental carbon-containing materials. One form of the present invention is a method for controlling the particle size of the semiconductor or elemental carbon-containing material by interacting an amino acid oligomer that specifically binds the material with solutions that can result in the formation of the material. The same method can be used to control the aspect ratio of the nanocrystal particles of the semiconductor material. Another form of the present invention is a method to create nanowires from the semiconductor or elemental carbon-containing material. Yet another form of the present invention is a biologic scaffold comprising a substrate capable of binding one or more biologic materials, one or more biologic materials attached to the substrate, and one or more elemental carbon-containing molecules attached to one or more biologic materials.
    Type: Application
    Filed: February 8, 2006
    Publication date: December 7, 2006
    Inventors: Angela Belcher, Richard Smalley, Esther Ryan, Seung-Wuk Lee
  • Publication number: 20060231399
    Abstract: The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions.
    Type: Application
    Filed: June 19, 2006
    Publication date: October 19, 2006
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Robert Hauge, W. Kittrell, Ramesh Sivarajan, Michael Strano, Sergei Bachilo, R. Weisman
  • Publication number: 20060201880
    Abstract: The present invention is generally directed to new liquid-liquid extraction methods for the length-based separation of carbon nanotubes (CNTs) and other 1-dimensional nanostructures.
    Type: Application
    Filed: November 29, 2005
    Publication date: September 14, 2006
    Applicant: William Marsh Rice University
    Inventors: Kirk Ziegler, Daniel Schmidt, Robert Hauge, Richard Smalley, Irene Marek
  • Publication number: 20060159612
    Abstract: The present invention is generally directed to methods of ozonating CNTs in fluorinated solvents (fluoro-solvents), wherein such methods provide a less dangerous alternative to existing ozonolysis methods. In some embodiments, such methods comprise the steps of: (a) dispersing carbon nanotubes in a fluoro-solvent to form a dispersion; and (b) reacting ozone with the carbon nanotubes in the dispersion to functionalize the sidewalls of the carbon nanotubes and yield functionalized carbon nanotubes with oxygen-containing functional moieties. In some such embodiments, the fluoro-solvent is a fluorocarbon solvent, such as a perfluorinated polyether.
    Type: Application
    Filed: November 22, 2005
    Publication date: July 20, 2006
    Applicant: William Marsh Rice University
    Inventors: Kirk Ziegler, Jonah Shaver, Robert Hauge, Richard Smalley, Irene Marek
  • Publication number: 20060008407
    Abstract: This invention provides a method of making single-wall carbon nanotubes by laser vaporizing a mixture of carbon and one or more Group VIII transition metals. Single-wall carbon nanotubes preferentially form in the vapor and the one or more Group VIII transition metals catalyzed growth of the single-wall carbon nanotubes. In one embodiment of the invention, one or more single-wall carbon nanotubes are fixed in a high temperature zone so that the one or more Group VIII transition metals catalyze further growth of the single-wall carbon nanotube that is maintained in the high temperature zone. In another embodiment, two separate laser pulses are utilized with the second pulse timed to be absorbed by the vapor created by the first pulse.
    Type: Application
    Filed: April 30, 2003
    Publication date: January 12, 2006
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Ting Guo, Andrew Rinzler, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050260120
    Abstract: This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
    Type: Application
    Filed: August 7, 2003
    Publication date: November 24, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050249656
    Abstract: This invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.
    Type: Application
    Filed: December 28, 2001
    Publication date: November 10, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Hongjie Dai, Jie Liu, Andrew Rinzler, Jason Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050244326
    Abstract: The invention relates generally to dispersing and fractionating single-wall carbon nanotubes, which can be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the nanotubes.
    Type: Application
    Filed: December 22, 2004
    Publication date: November 3, 2005
    Applicant: William Marsh Rice University
    Inventors: Daniel Colbert, Hongjie Dai, Jason Hafner, Andrew Rinzler, Richard Smalley, Jie Liu, Kenneth Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20050244327
    Abstract: Single-walled carbon nanotubes have been synthesized by the catalytic decomposition of both carbon monoxide and ethylene over a supported metal catalyst known to produce larger multi-walled nanotubes. Under certain conditions, there is no termination of nanotube growth, and production appears to be limited only by the diffusion of reactant gas through the product nanotube mat that covers the catalyst The present invention concerns a catalyst-substrate system which promotes the growth of nanotubes that are predominantly single-walled tubes in a specific size range, rather than the large irregular-sized multi-walled carbon fibrils that are known to grow from supported catalysts.
    Type: Application
    Filed: December 20, 2002
    Publication date: November 3, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Jason Hafner, Daniel Colbert, Ken Smith
  • Publication number: 20050171281
    Abstract: The present invention is generally directed to the block copolymerization of rigid rod polymers with carbon nanotubes (CNTs), the CNTs generally being shortened, to form nanotube block copolymers. The present invention is also directed to fibers and other shaped articles made from the nanotube block copolymers of the present invention.
    Type: Application
    Filed: October 25, 2004
    Publication date: August 4, 2005
    Applicant: William Marsh Rice University
    Inventors: Wen-Fang Hwang, Richard Smalley, Robert Hauge
  • Publication number: 20050100497
    Abstract: This invention provides a method of making single-wall carbon nanotubes by laser vaporizing a mixture of carbon and one or more Group VIII transition metals. Single-wall carbon nanotubes preferentially form in the vapor and the one or more Group VIII transition metals catalyzed growth of the single-wall carbon nanotubes. In one embodiment of the invention, one or more single-wall carbon nanotubes are fixed in a high temperature zone so that the one or more Group VIII transition metals catalyze further growth of the single-wall carbon nanotube that is maintained in the high temperature zone. In another embodiment, two separate laser pulses are utilized with the second pulse timed to be absorbed by the vapor created by the first pulse.
    Type: Application
    Filed: April 30, 2003
    Publication date: May 12, 2005
    Applicant: William Marsh Rice University
    Inventors: Richard Smalley, Daniel Colbert, Ting Guo, Andrew Rinzler, Pavel Nikolaev, Andreas Thess