Patents by Inventor Richard Stuart Seger, JR.

Richard Stuart Seger, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367416
    Abstract: A computing device includes signal generation circuitry and also includes a location on the computing device that is operative to couple a signal generated by the signal generation circuitry into a user. For example, the computing device includes signal generation circuitry that generates a signal that includes information corresponding to a user and/or an application that is operative within the computing device. The signal generation circuitry couples the signal into the user from a location on the computing device based on a bodily portion of the user being in contact with or within sufficient proximity to the location on the computing device that facilitates coupling of the signal into the user. Also, the signal may be coupled via the user to another computing device that includes a touchscreen display that is operative to detect and receive the signal.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Shayne X. Short, Ph.D., Timothy W. Markison
  • Publication number: 20230359301
    Abstract: A touch screen display is operable to operate in a first mode during a first temporal period based on activating exactly one set of drive-sense circuits of a plurality of sets of drive-sense circuits to generate a corresponding one set of sensed signals during the first temporal period, and processing the corresponding one set of sensed signals to generate first proximal interaction data for the first temporal period. The touch screen display is operable to operate in a second mode during a second temporal period after the first temporal period based on activating more than one set of drive-sense circuits of the plurality of sets of drive-sense circuits to generate a corresponding more than one set of sensed signals during the second temporal period, and processing the set of sensed signals to generate second proximal interaction data for the second temporal period.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 9, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Patrick Troy Gray, Richard Stuart Seger, JR.
  • Publication number: 20230359344
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230358525
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Timothy W. Markison
  • Patent number: 11809278
    Abstract: A method for execution by an input/output (IO) control module of an integrated circuit (IC) includes determining whether a programmable IO interface module is for dynamic or static use. The programmable IO interface module includes a configurable front-end module and a configurable back-end module. When the programmable IO interface module is for the dynamic use, determining to configure the programmable IO interface module as the dynamic use of a configuration of a plurality of configurations. The plurality of configurations includes a bidirectional interface, an input, an output, a concurrent drive and sense interface, and a concurrent transmit-receive interface. The method further includes configuring the front-end module in accordance with the configuration, configuring the back-end module in accordance with the configuration, and determining whether to change the configuration to another configuration of the plurality of configurations.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 7, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Gerald Dale Morrison, Daniel Keith Van Ostrand, Patrick Troy Gray, Timothy W. Markison
  • Publication number: 20230350527
    Abstract: A method for use in a touch-sensitive panel includes generating electric fields by applying drive signals to a plurality of row electrodes and a plurality of column electrodes included in the touch-sensitive panel, and sensing at least one information signal capacitively coupled to the touch-sensitive panel by detecting impedance changes associated with the plurality of row electrodes and the plurality of column electrodes. The impedance changes are converted to received data. Based on the received data a transmission pattern associated with the at least one information signal is determined. It is further determined that the transmission pattern corresponds to an identification code.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray, Timothy W. Markison
  • Publication number: 20230350522
    Abstract: A method for determining for determining response for a touch display panel begins by receiving an analog input signal from a data drive input circuit that is operable to generate an analog input signal based on a digital input. The method continues by generating a reference signal voltage from the analog input signal, generating a data signal voltage from the analog input signal and using a difference detection circuit, outputting an analog output voltage. The method then continues by generating an error correction current based on the analog output voltage, where the error correction current adjusts the data signal voltage in order to keep inputs to the difference detection circuit substantially equal. Finally, the method finishes by generating a current representative of a light intensity for light received by a sensor cell associated with the touch display panel, converting the analog output signal into a digital representation of the current and producing information representative of light intensity.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20230341959
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating a stream of capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value within a temporal period; and processing the capacitance image data to determine a touchless gesture occurring within the temporal period.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 26, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20230341960
    Abstract: A variable touch screen includes a first touch screen display and a second touch screen display, where the first touch screen display includes a first plurality of electrodes and first touch screen circuitry operably coupled to the first plurality of electrodes, where the first touch screen circuity includes a plurality of drive-sense circuits that, when enabled, are configured to drive a plurality of sensor signals onto the plurality of electrodes, sense first effects that the plurality of electrodes have on the plurality of sensor signals and produce a first plurality of sensed signals based on the first effects. The second touch screen display has a first edge of the first touch screen display that, when oriented such that the first edge is aligned adjacent to a first edge of the second touch screen display, increases a size of the variable touch screen.
    Type: Application
    Filed: May 28, 2023
    Publication date: October 26, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Patent number: 11797139
    Abstract: A fingerprint scanning device having a sensing area that includes a plurality of row electrodes and a plurality of column electrodes. The row electrodes and column electrodes are separated by a dielectric material and arranged in a crossing pattern in the sensing area. A plurality of drive-sense circuits drive sensor signals on the electrodes. In an embodiment, each of the drive-sense circuits is configured, when enabled, to drive a sensor signal on at least one electrode of the plurality of column electrodes or the plurality of row electrodes, the sensor signal including a drive signal component and a receive signal component. Each of the drive-sense circuits is further configured to generate, based on the receive signal component, a sensed signal representative of an impedance of the at least one electrode.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: October 24, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Patrick Troy Gray, Richard Stuart Seger, Jr.
  • Patent number: 11796581
    Abstract: A data sensing circuit including a reference signal circuit, a reference signal combining circuit, drive-sense circuits, an array of sensors, sets of digital filters, and a processing module. The processing module provides a reference control signal to the reference signal circuit operable to generate a plurality of reference signals based on the reference control signal. The reference signal combining circuit transmits sets of reference signals to the drive-sense circuits operably coupled to an array of sensor. When the sensor is exposed to a condition, and is receiving the signal from the drive-sense circuits, an electrical characteristic of the sensor affects the signal, which is interpreted by the drive-sense circuit and converted to a digital signal to be filtered by the set of digital filters generating a frequency response for the array of sensors.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: October 24, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Patrick Troy Gray, Richard Stuart Seger, Jr.
  • Patent number: 11797120
    Abstract: A method includes a first computing device generating a signal having an oscillating component and driving the signal on a first touch sense element of the first computing device. The method continues with the first computing device detecting a touch on the first touch sense element based on the signal. While the touch is detected, the method continues by the first computing device modulating the signal with data to produce a modulated data signal. The method continues with a second computing device receiving the modulated data signal via a transmission medium and a second touch sense element of the second computing device, where the transmission medium includes at least one of a human body and a close proximity between the first and second computing devices. The method continues with by the second computing device demodulating the modulated data signal to recover the data.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 24, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20230333694
    Abstract: A data drive input circuit includes a pulse width modulation (PWM) module operable to generate a PWM signal based on input data and a clock signal. The data drive input circuit further includes a mode enable module operable to establish a light emitting diode (LED) transmit mode of a mode signal when the PWM signal is in a first state and establish an LED receive mode of the mode signal when the PWM signal is in a second state. The data drive input circuit further includes a transmit/receive drive module operable to generate a transmit data signal component of an analog input signal based on the PWM signal and the LED transmit mode generate a receive signal component of the analog input signal based on the PWM signal and the LED receive mode and output the analog input signal.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, JR., Timothy W. Markison
  • Patent number: 11789508
    Abstract: A power supply signal conditioning system includes a power supply, one or more loads, and a drive-sense circuit (DSC). The power supply is operably coupled to one or more loads. When enabled, the power supply configured to output a power supply signal having a DC (direct current) voltage component and a ripple voltage component that is based on conversion of an AC (alternating current) signal in accordance with generating the power supply signal. The DSC is operably coupled to the power supply. When enabled, the DSC is configured simultaneously to sense the power supply signal and, based on sensing of the power supply signal, adaptively to process the power supply signal in accordance with reducing or eliminating the ripple voltage component of the power supply signal to generate a conditioned power supply signal to service the one or more loads.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: October 17, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11789555
    Abstract: A touch screen display includes a display, a video graphics processing module, electrodes integrated into at least a portion of the display, and drive-sense circuits coupled to the electrodes. The drive-sense circuits, when enabled and concurrent with the display rendering frames of data into the visible images, detect changes in electrical characteristics of electrodes. At least some drive-sense circuits monitor sensor signals on at least some electrodes. A sensor signal includes a drive signal component and a receive signal component. The at least some drive-sense circuits generate the drive signal components of the sensor signals. The receive signal component is a representation of a change in an electrical characteristic of an electrode of the at least some electrodes when a corresponding drive signal component is applied to the electrode. The change in the electrical characteristic of the electrode is indicative of a proximal touch to the touch screen display.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: October 17, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20230324464
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 12, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230324950
    Abstract: A low voltage drive circuit (LVDC) includes a data splitter operable to split transmit digital data into a plurality of streams of digital data. The LVDC further includes a plurality of signal generators operable to receive the plurality of streams of digital data at a plurality of data rates and generate a plurality of analog outbound data signals for the plurality of streams of digital data. A first signal generator receives a first stream of digital data of the plurality of streams of digital data at a first data rate. A second signal generator receives a second stream of digital data of the plurality of streams of digital data at a second data rate. The LVDC further includes a signal combiner operable to combine the plurality of analog outbound data signals into analog outbound data and a drive sense circuit operable to drive the analog outbound data onto a bus.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20230324861
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: May 4, 2023
    Publication date: October 12, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230305533
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Application
    Filed: May 5, 2023
    Publication date: September 28, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230305663
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with a region of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC and other digital signals generated by other DSCs determine the region of the surface of the TSD that is associated with the overlay and to adapt sensitivity of the TSD within that region.
    Type: Application
    Filed: May 8, 2023
    Publication date: September 28, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Kevin Joseph Derichs, Shayne X. Short, Ph.D., Timothy W. Markison