Patents by Inventor Richard Van Kranenburg

Richard Van Kranenburg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976306
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding said Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: May 7, 2024
    Assignees: Stichting Voor De Technische Wetenschappen, WAGENINGEN UNIVERSITEIT
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Patent number: 11939605
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding the Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: March 26, 2024
    Assignees: Wageningen Universiteit, Stichting Voor De Technische Wetenschappen
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Publication number: 20220213455
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding said Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Application
    Filed: January 14, 2022
    Publication date: July 7, 2022
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Patent number: 11326162
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding the Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: May 10, 2022
    Assignees: Wageningen Universiteit, Stichting Voor De Technische Wetenschappen
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Patent number: 11242513
    Abstract: The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 30° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding the Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: February 8, 2022
    Assignees: Wageningen Universiteit, Stichting Voor De Technische Wetenschappen
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos
  • Publication number: 20210340532
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding said Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Application
    Filed: August 16, 2017
    Publication date: November 4, 2021
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Patent number: 10731186
    Abstract: The invention relates to a genetically engineered thermophilic bacterial cell that is facultative anaerobic comprising: a) inactivation or deletion of the endogenous (S)-lactate dehydrogenase gene; b) introduction of a (R)-lactate dehydrogenase gene; c) inactivation or deletion of the endogenous pyruvate formate lyase A and/or B gene.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: August 4, 2020
    Assignee: PURAC BIOCHEM BV
    Inventors: Marinus Petrus Machielsen, Mariska Van Hartskamp, Richard Van Kranenburg
  • Publication number: 20190367893
    Abstract: The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 30° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding said Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering at elevated temperatures and are of particular value in the genetic manipulation of thermophilic organisms; particularly microorganisms.
    Type: Application
    Filed: December 14, 2016
    Publication date: December 5, 2019
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos
  • Publication number: 20190360002
    Abstract: A polynucleotide encoding a ThermoCas9 protein from Geobacillus thermodenitrificans and a constitutive promoter are used to engineer eukaryotic cells, e.g. fungi, yeast or algae, so that the ThermoCas9 endonuclease is integrated and expressed from the genome of the cell. Then, a second expression plasmid is used to transfect these ThermoCas9 expressing cells, the second plasmid containing an inducible promoter and a polynucleotide encoding a guide RNA. The guide RNA combines with the ThermoCas9 to provide the targeted endonuclease activity to cleave the cell DNA at a desired locus or gene of interest. A repair-oligo is also provided to the cell whereby following DNA cleavage, homologous recombination takes place in the cell with the repair-oligo so that either a deletion or substitution of nucleotides in the locus or gene of interest is achieved. Expression vectors and methods of using the vectors to achieve ThermoCas9 mediated gene editing are described whereby higher temperatures, e.g. greater than 30° C.
    Type: Application
    Filed: December 14, 2017
    Publication date: November 28, 2019
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Publication number: 20190322993
    Abstract: Thermostable Cas9 nucleases. The present invention relates to the field of genetic engineering and more particularly to nucleic acid editing and genome modification. The present invention provides an isolated Cas protein or polypeptide fragment thereof having an amino acid sequence of SEQ ID NO: 1 or a sequence of at least 77% identity therewith. The Cas protein or polypeptide is capable of binding, cleaving, marking or modifying a double stranded target polynucleotide at a temperature in the range 20° C. and 100° C. inclusive. The invention further provides isolated nucleic acid molecules encoding said Cas9 nucleases, expression vectors and host cells. The invention also provides PAM sequences recognized by the Cas protein or polypeptide, The Cas9 nucleases disclosed herein provide novel tools for genetic engineering in general, in particular at elevated temperatures.
    Type: Application
    Filed: August 16, 2017
    Publication date: October 24, 2019
    Inventors: John Van Der Oost, Richard Van Kranenburg, Elleke Fenna Bosma, Ioannis Mougiakos, Prarthana Mohanraju
  • Patent number: 10273509
    Abstract: A genetically engineered thermophilic bacterial cell that is facultative anaerobic and (S)-lactic acid producing including inactivation or deletion of the endogenous methylglyoxal synthase gene mgsA.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: April 30, 2019
    Assignee: PURAC BIOCHEM B.V.
    Inventors: Richard Van Kranenburg, Anna Verhoef, Marinus Petrus Machielsen
  • Publication number: 20170298398
    Abstract: A genetically engineered thermophilic bacterial cell that is facultative anaerobic and (S)-lactic producing including inactivation or deletion of the endogenous methylglyoxal synthase gene mgsA.
    Type: Application
    Filed: July 13, 2015
    Publication date: October 19, 2017
    Applicant: PURAC BIOCHEM B.V.
    Inventors: Richard VAN KRANENBURG, Anna VERHOEF, Marinus Petrus MACHIELSEN
  • Publication number: 20170275656
    Abstract: The invention relates to a genetically engineered thermophilic bacterial cell that is facultative anaerobic comprising: a) inactivation or deletion of the endogenous (S)-lactate dehydrogenase gene; b) introduction of a (R)-lactate dehydrogenase gene; c) inactivation or deletion of the endogenous pyruvate formate lyase A and/or B gene.
    Type: Application
    Filed: July 13, 2015
    Publication date: September 28, 2017
    Applicant: PURAC BIOCHEM BV
    Inventors: Marinus Petrus MACHIELSEN, Mariska VAN HARTSKAMP, Richard VAN KRANENBURG
  • Patent number: 8802403
    Abstract: Disclosed herein is a genetic modification of moderately thermophilic Bacillus species that are facultative anaerobic and homolactic. The method includes introducing DNA cloned in a thermosensitive plasmid system containing a pSH71 replicon or a homologue thereof into cells of a moderately thermophilic Bacillus species that is facultative anaerobic and homolactic; culturing the cells on a selective medium at a permissive temperature to select transformed cells; culturing the transformed cells on a selective medium at a non-permissive temperature to select transformed cells capable of growing on the selective medium at the non-permissive temperature. The method can modify the Bacilli for R-lactic acid production, production of other organic acids than lactic acid, alcohol, enzymes, amino acids, and vitamins. The Bacillus species may be modified by replacing the S-lactate dehydrogenase gene by a DNA construct including a DNA sequence encoding R-lactate dehydrogenase.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: August 12, 2014
    Assignee: Purac Biochem B.V.
    Inventors: Richard Van Kranenburg, Mariska Van Hartskamp, Eelco Anthonius Johannes Heintz, Esther Johanna Geertruda Van Mullekom, Jurgen Snelders
  • Patent number: 8663954
    Abstract: A method for the construction of a moderately thermophilic Bacillus strain capable of utilizing sucrose as a carbon source includes the transformation of a parent moderately thermophilic Bacillus strain not capable of utilizing sucrose as a carbon source with a polynucleotide comprising a DNA sequence that encodes a polypeptide having sucrose-specific phosphotransferase activity and having i) an amino acid sequence of SEQ ID NO:1 or ii) an amino acid sequence with an identity of at least 70% to the sequence of SEQ ID NO:1 and/or comprising a DNA sequence that encodes a polypeptide having sucrose-6-phosphate hydrolase activity and having iii) an amino acid sequence of SEQ ID NO:2 or iv) an amino acid sequence with an identity of at least 70% to the sequence of SEQ ID NO:2.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 4, 2014
    Assignee: Purac Biochem B.V.
    Inventors: Richard Van Kranenburg, Mariska Van Hartskamp
  • Publication number: 20140017745
    Abstract: Disclosed herein is a genetic modification of moderately thermophilic Bacillus species that are facultative anaerobic and homolactic. The method includes introducing DNA cloned in a thermosensitive plasmid system containing a pSH71 replicon or a homologue thereof into cells of a moderately thermophilic Bacillus species that is facultative anaerobic and homolactic; culturing the cells on a selective medium at a permissive temperature to select transformed cells; culturing the transformed cells on a selective medium at a non-permissive temperature to select transformed cells capable of growing on the selective medium at the non-permissive temperature. The method can modify the Bacilli for R-lactic acid production, production of other organic acids than lactic acid, alcohol, enzymes, amino acids, and vitamins. The Bacillus species may be modified by replacing the S-lactate dehydrogenase gene by a DNA construct including a DNA sequence encoding R-lactate dehydrogenase.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 16, 2014
    Inventors: Richard VAN KRANENBURG, Mariska VAN HARTSKAMP, Eelco Anthonius Johannes HEINTZ, Esther Johanna Geertruda VAN MULLEKOM, Jurgen SNELDERS
  • Patent number: 8497128
    Abstract: Disclosed herein is a genetic modification of moderately thermophilic Bacillus species that are facultative anaerobic and homolactic. The method includes introducing DNA cloned in a thermosensitive plasmid system containing a pSH71 replicon or a homologue thereof into cells of a moderately thermophilic Bacillus species that is facultative anaerobic and homolactic; culturing the cells on a selective medium at a permissive temperature to select transformed cells; culturing the transformed cells on a selective medium at a non-permissive temperature to select transformed cells capable of growing on the selective medium at the non-permissive temperature. The method can modify the Bacilli for R-lactic acid production, production of other organic acids than lactic acid, alcohol, enzymes, amino acids, and vitamins. The Bacillus species may be modified by replacing the S-lactate dehydrogenase gene by a DNA construct including a DNA sequence encoding R-lactate dehydrogenase.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 30, 2013
    Assignee: Purac Biochem B.V.
    Inventors: Richard Van Kranenburg, Mariska Van Hartskamp, Eelco Anthonius Johannes Heintz, Esther Johanna Geertruda Van Mullekom, Jurgen Snelders
  • Publication number: 20120208248
    Abstract: A method for the construction of a moderately thermophilic Bacillus strain capable of utilising sucrose as a carbon source includes the transformation of a parent moderately thermophilic Bacillus strain not capable of utilising sucrose as a carbon source with a polynucleotide comprising a DNA sequence that encodes a polypeptide having sucrose-specific phosphotransferase activity and having i) an amino acid sequence of SEQ ID NO:1 or ii) an amino acid sequence with an identity of at least 70% to the sequence of SEQ ID NO:1 and/or comprising a DNA sequence that encodes a polypeptide having sucrose-6-phosphate hydrolase activity and having iii) an amino acid sequence of SEQ ID NO:2 or iv) an amino acid sequence with an identity of at least 70% to the sequence of SEQ ID NO:2.
    Type: Application
    Filed: July 15, 2010
    Publication date: August 16, 2012
    Inventors: Richard Van Kranenburg, Mariska Van Hartskamp
  • Publication number: 20100009420
    Abstract: The present invention relates to genetic modification for industrial applications of moderately thermophilic Bacillus species that are facultative anaerobic and homolactic. The present invention comprises a method for modifying moderately thermophilic Bacillus species that are facultative anaerobic and homolactic by genetic engineering comprising: introducing a DNA cloned in a thermosensitive plasmid system containing a pSH71 replicon or a homologue thereof into cells of a moderately thermophilic Bacillus species that is facultative anaerobic and homolactic; culturing the cells on a selective medium at a permissive temperature for plasmid replication to select transformed cells capable of growing on said selective medium at said permissive temperature; culturing said transformed cells on a selective medium at a non-permissive temperature for plasmid replication to select transformed cells capable of growing on said selective medium at said non-permissive temperature.
    Type: Application
    Filed: January 24, 2007
    Publication date: January 14, 2010
    Inventors: Richard Van Kranenburg, Mariska Van Hartskamp, Eelco Anthonius Johannes Heintz, Esther Johanna Geertruda Van Mullekom, Jurgen Snelders