Patents by Inventor Richard W. Morrison

Richard W. Morrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974793
    Abstract: A method facilitates the treatment of the spine of a patient by providing simultaneous access through at least a first opening and a second opening formed in the patient. For example, the method can include the acts of positioning the patient on a surgical table, providing the first opening into a posterior portion of the patient, providing the second opening into a lateral portion of the patient, inserting a first device through the first opening into the patient to contact the spine in a first direction that is transverse to the coronal plane of the patient, and inserting a second device through the second opening into the patient to contact the spine in a second direction that is transverse to the sagittal plane of the patient, where the first and second openings are accessible simultaneously, and, when the first and second devises are inserted into the patient, the position of the patient is stationary with respect to a portion of the table.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: May 7, 2024
    Assignee: WARSAW ORTHOPEDIC, INC.
    Inventors: Jeffrey W. Beale, Thomas A. Carls, Richard A. Hynes, Matthew M. Morrison
  • Patent number: 11966548
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11954057
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11947381
    Abstract: A data formatting module of a low voltage drive circuit (LVDC) includes a sample and hold circuit, an interpreter, a first buffer, a digital to digital converter circuit, and a data packeting circuit. The sample and hold circuit is operable to sample and hold an n-bit digital value of filtered digital data to produce an n-bit sampled digital data value. The interpreter is operable to convert the n-bit sampled digital data value into interpreted n-bit sampled digital data. The interpreter is operable to write the interpreted n-bit sampled digital data into the first buffer in accordance with a write clock until a digital word is formed. The digital to digital converter circuit is operable to format the digital word to produce a formatted digital word. The data packeting circuit is operable to generate a data packet from the formatted digital word and output the data packet as received digital data.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11947761
    Abstract: An encoded data pattern touchscreen sensing computing device includes a touchscreen, a plurality of electrodes, a plurality of drive-sense circuits, and a processing module. When enabled and in close proximity to an encoded data pattern, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes caused by one or more electrical materials of the encoded data pattern. The encoded data pattern includes one or more electrical materials arranged in a pattern. Electrical properties of the one or more electrical materials and the pattern are representative of data. The processing module is operable to receive a set of detected changes in electrical characteristics of the set of drive-sense circuits, interpret the detected changes in electrical characteristics as a set of impedance values representative of the one or more electrical materials of the encoded data pattern, and interpret the set of impedance values to determine the data.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison, Patricia Markison Healy
  • Patent number: 11942217
    Abstract: A system including a range of motion, quality of sleep, overall, and control modules. The range of motion module, prior to a procedure being performed on a patient, determines a first range of motion score of the patient based on a first signal generated by a sensor. The quality of sleep module, prior to the procedure being performed on the patient, determines a first quality of sleep score or a first pain score based on the first signal. The overall module determines a combined score based on the first range of motion score and the first quality of sleep score or the first pain score. The control module compares the combined score to a predetermined threshold and predicts an outcome of the procedure based on the comparison. The control module, based on the combined score, determines whether to perform the procedure, adjust the procedure or refrain from performing the procedure.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: March 26, 2024
    Assignee: WARSAW ORTHOPEDIC, INC.
    Inventors: Randal Schulhauser, Richard L. Brown, Matthew M. Morrison, Patrick W. Kinzie, Jeffrey R. VanRaaphorst, Emily C. Byrne
  • Publication number: 20240094854
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with a region of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC and other digital signals generated by other DSCs determine the region of the surface of the TSD that is associated with the overlay and to adapt sensitivity of the TSD within that region.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Publication number: 20240095203
    Abstract: A low voltage drive circuit (LVDC) includes a digital to analog input circuit to convert transmit digital data into combined analog outbound data, the transmit digital data has a data rate based on a host input clock, and a first portion of the combined analog outbound data has a first oscillation rate based on a first transmit channel clock and a second portion has a second oscillation rate based on a second transmit channel clock. The LVDC also includes a drive sense circuit to convert the combined analog outbound data into an analog transmit signal that is transmitted on a bus. The LVDC also includes a clock circuit to generate a transmit input clock to synchronize receiving the transmit digital data from a host, generate the first transmit channel clock based on the host input clock, and generate the second transmit channel clock based on the host input clock.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20240096406
    Abstract: A method for execution by a Dynamic Random Access (DRAM) cell processing circuit in a read mode, includes receiving a pre-charge input and charging a bit-line operably coupled to a plurality of DRAM cells of a DRAM memory device, including a current DRAM cell, to a pre-charge voltage. The method continues by sensing a voltage change on the bit-line, where the sensing is based on a difference between a voltage stored on a DRAM cell capacitor of the current DRAM cell and the pre-charge voltage and generating a logic input for one of four voltage states for the current DRAM cell. The method then continues by supplying, supplying, based on the logic input, a corresponding logic voltage on the bit-line to refresh the voltage stored in the DRAM cell capacitor of the current DRAM cell.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, JR., Timothy W. Markison
  • Patent number: 11935397
    Abstract: A test system includes a test container array including a plurality of test containers and a plurality of electrodes integrated into the test container array. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia A. Markison
  • Patent number: 11933607
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Shayne X Short, Timothy W. Markison
  • Patent number: 11922800
    Abstract: A test system includes a testing base including a plurality of testing base containers, and a plurality of electrodes integrated into the plurality of testing base containers. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 5, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia M. Healy
  • Patent number: 10487042
    Abstract: The present application provides solvent-free methods for decarboxylation of amino acids via imine formation with a ketone, enone, enal, aldehyde co-reagent or combination thereof, under heated conditions, with optional recovery of the co-reagent and/or co-reagent byproduct.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: November 26, 2019
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Richard W. Morrison, Douglas Michael Jackson, Daniel Richard Morrison
  • Patent number: 10118898
    Abstract: The present application provides methods for decarboxylation of amino acids via imine formation with a catalyst under pressurized, heated, conditions in either a microwave or oil bath, with optional recovery of the catalyst and/or catalyst byproduct.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: November 6, 2018
    Assignee: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.
    Inventors: Richard W. Morrison, Douglas Michael Jackson, Daniel Richard Morrison
  • Publication number: 20180312461
    Abstract: The present application provides solvent-free methods for decarboxylation of amino acids via imine formation with a ketone, enone, enal, aldehyde co-reagent or combination thereof, under heated conditions, with optional recovery of the co-reagent and/or co-reagent byproduct.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: Richard W. Morrison, Douglas Michael Jackson, Daniel Richard Morrison
  • Publication number: 20160362380
    Abstract: The present application provides methods for decarboxylation of amino acids via imine formation with a catalyst under pressurized, heated, conditions in either a microwave or oil bath, with optional recovery of the catalyst and/or catalyst byproduct.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 15, 2016
    Inventors: Richard W. Morrison, Douglas Michael Jackson, Daniel Richard Morrison
  • Patent number: 9452954
    Abstract: The present application provides methods for decarboxylation of amino acids via imine formation with a catalyst under pressurized and superheated conditions in either a microwave or oil bath.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 27, 2016
    Inventors: Richard W. Morrison, Douglas Michael Jackson
  • Publication number: 20140275569
    Abstract: The present application provides methods for decarboxylation of amino acids via imine formation with a catalyst under superheated conditions in either a microwave or oil bath.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Richard W. Morrison, Douglas Michael Jackson