Patents by Inventor Richard Wade

Richard Wade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180306659
    Abstract: A pressure sensor assembly having a printed circuit board (PCB) with a pressure sensor mounted on the PCB, a side wall engaging the PCB, a membrane, a cavity defined by the membrane, the side wall and the PCB, and a gel or liquid filling the cavity. The pressure sensor assembly may include a fill-hole extending into the cavity through which the cavity may be filled with the gel or liquid. The fill-hole may extend through one or both of the PCB and/or the side wall. The pressure sensor assembly may further include an exhaust-hole, which may extend through one or both of the PCB and/or the side wall. A method of forming the pressure sensor assembly may include filling a cavity of the pressure sensor assembly with a gel or liquid through a fill-hole and curing the gel or liquid once in the cavity.
    Type: Application
    Filed: August 23, 2017
    Publication date: October 25, 2018
    Inventors: Richard Wade, Jason D. Patch
  • Publication number: 20180306660
    Abstract: A pressure sensor assembly having a printed circuit board (PCB) with a pressure sensor and a ring mounted on the PCB. The pressure sensor assembly may include a force transmitting member positioned at least partially within the ring. The force transmitting member may transfer a force applied to a front side of the force transmitting member to a front side of the pressure sensor. For example, the force transmitting member may be exposed to a fluid within a reservoir or other sensed media and may transmit forces of the fluid and/or other sensed media to the pressure sensor. The force transmitting member may include a biocompatible material to facilitate use of the pressure sensor assembly in medical and/or food related applications. One example biocompatible material usable in the force transmitting member may be cured silicone elastomer.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 25, 2018
    Inventors: Richard Wade, Brian Speldrich, Richard C. Sorenson
  • Patent number: 10036676
    Abstract: A force sensor may comprise a sensing die comprising a cap and a support. Generally, a first surface of the support may comprise a buried cavity and one or more channels. The one or more channels may extend from the buried cavity towards the outer edges of the support and may ensure the force sensor is not sensitive to ambient or atmospheric pressure variation. The cap may be bonded to the first surface of the support, thereby forming a sensing diaphragm located above the buried cavity. Additionally, the force sensor may comprise an actuation element to sense a change in force from an external media. The actuation element may transmit the force to the sensing diaphragm causing it to deflect into the buried cavity. The one or more sense elements on the sensing diaphragm may provide an indication of the change in force based on the amount of deflection.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 31, 2018
    Inventors: Alistair David Bradley, Richard Alan Davis, Richard Wade
  • Patent number: 9995641
    Abstract: Apparatus and associated methods relate to a force sensor having flip-chip mounted force-sensing die having a force-sensing element fabricated on an unflipped top surface and an unflipped back surface being thinned so as to create a flexible diaphragm responsive to an externally applied force, wherein, when the force-sensing die is flipped and mounted, a predetermined space remains between the top surface of the force-sensing die and the mounting substrate it faces, the substrate presenting a deflection limitation for the deformation of the flexible membrane during a force event. In an illustrative embodiment, the force sensor may have a mechanical stop to precisely establish a predetermined deflection limitation. In some embodiments, the predetermined deflection limitation may advantageously limit the deflection of the flexible membrane so as not to deflect beyond a breaking point.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: June 12, 2018
    Assignee: Honeywell International Inc.
    Inventors: Richard A. Wade, James D. Cook
  • Publication number: 20180067008
    Abstract: A pressure sensor may comprise a first wafer comprising a plurality of recesses formed thereon; a second wafer bonded to the first wafer over the plurality of recesses, wherein the second wafer comprises a plurality of sensing diaphragms defined by an area of the second wafer disposed over each recess, and wherein the each recess forms a cavity between the first wafer and the second wafer; one or more sense elements supported by each sensing diaphragm, wherein the at least one sensing diaphragm is configured to contact a surface of the respective cavity to prevent overforce on the at least one sensing diaphragm, and wherein the one or more sense elements on the at least one sensing diaphragm continue to provide an indication of a pressure when the at least one sensing diaphragm is in contact with the surface of the respective cavity.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Richard Wade, Alistair David Bradley, Richard Alan Davis, Jason Dennis Patch
  • Publication number: 20180058955
    Abstract: A sense die comprises a chip comprising a sense diaphragm, one or more sense elements supported by the diaphragm, one or more bond pads supported by a first side of the chip, a structural frame disposed on the first side of the chip, and one or more electrical contacts extending through the structural frame. Each of the one or more bond pads is electrically coupled to at least one of the one or more sense elements. The structural frame is disposed at least partially about the diaphragm, and the one or more electrical contacts are electrically coupled to the one or more bond pads.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Richard Wade, Richard Alan Davis
  • Publication number: 20180017449
    Abstract: A force sensor includes a leadframe comprising a plurality of electrically conductive leads, a sense die coupled to the leadframe, and an encapsulant disposed over at least a portion of the leadframe and the sense die. The sense die is electrically coupled to the plurality of leads, and the plurality of leads extends from the encapsulant.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Inventors: Josh M. Fribley, Lamar Floyd Ricks, Richard Wade, Jim Machir, Richard Alan Davis
  • Patent number: 9869598
    Abstract: Disclosed herein are force sensors which include a sense die assembly and methods for manufacturing the sense die assembly and the force sensor. The disclosed sense die assembly, force sensor, and methods utilize wafer-level retention to hold an actuation element in a cavity of the sense die.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: January 16, 2018
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Alistair David Bradley
  • Publication number: 20170370793
    Abstract: Disclosed herein are force sensors which include a sense die assembly and methods for manufacturing the sense die assembly and the force sensor. The disclosed sense die assembly, force sensor, and methods utilize wafer-level retention to hold an actuation element in a cavity of the sense die.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 28, 2017
    Inventors: Richard Wade, Alistair David Bradley
  • Publication number: 20170260126
    Abstract: The present invention relates to compounds that modify low density lipoprotein receptor (LDLR) expression. The compounds have the structural formula I shown below: wherein m, R1, n, R2 and R3 are each as defined herein. The present invention also relates to processes for the preparation of these compounds, to pharmaceutical compositions comprising them, and to their use in the treatment of diseases or disorders associated with elevated levels of low density lipoprotein cholesterol (LDL-C).
    Type: Application
    Filed: September 15, 2015
    Publication date: September 14, 2017
    Inventors: Graham Michael Wynne, Angela Jane Russell, Joseph Mason, Carole Jeanne Rachele Bataille, Richard Wade-Martins, Alastair Kerr, Olivia Hibbitt, Lawrence Tam
  • Publication number: 20170241852
    Abstract: A flip chip pressure sensor assembly. The flip chip pressure sensor assembly comprises a substrate; a pressure sensor die comprising a sensing diaphragm, the die having a top side and a bottom side that is reverse to the top side, where the top side of the die is electrically connected to the substrate by flip chip mounting technology; a cover defining an aperture disposed over the pressure sensor die, where the aperture defined by the cover aligns with the sensing diaphragm to provide a path for pressure to be transmitted through the aperture to the bottom side of the sensing diaphragm; and a gel disk disposed within the aperture in intimate contact with a bottom side of the sensing diaphragm, where the gel disk is domed above an outer shoulder of a rim defined by the cover.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventor: Richard Wade
  • Patent number: 9658126
    Abstract: The present disclosure relates to sensors including pressure sensors, humidity sensors, flow sensors, etc. In some cases, a sensor unit subassembly for installation in or use with a pressure sensor housing may include at least one pressure sensor signal output terminal supported by a printed circuit board, a pressure input port, and a pressure sense element secured relative to one or more printed circuit boards. The printed circuit board(s) may include circuitry configured to format pressure output signals provided by the pressure sense element into a particularly chosen output format, and may provide the formatted pressure output signal(s) to an attached electrical connector of the pressure sensor housing. In some cases, the sensor unit subassemblies can be mixed with a multitude of different electrical connectors and/or with a multitude of different port connections to from a wide array of pressure sensor assemblies.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 23, 2017
    Assignee: Honeywell International Inc.
    Inventors: Ryan Jones, Todd Eckhardt, Richard Wade
  • Publication number: 20160273977
    Abstract: Apparatus and associated methods relate to a force sensor having flip-chip mounted force-sensing die having a force-sensing element fabricated on an unflipped top surface and an unflipped back surface being thinned so as to create a flexible diaphragm responsive to an externally applied force, wherein, when the force-sensing die is flipped and mounted, a predetermined space remains between the top surface of the force-sensing die and the mounting substrate it faces, the substrate presenting a deflection limitation for the deformation of the flexible membrane during a force event. In an illustrative embodiment, the force sensor may have a mechanical stop to precisely establish a predetermined deflection limitation. In some embodiments, the predetermined deflection limitation may advantageously limit the deflection of the flexible membrane so as not to deflect beyond a breaking point.
    Type: Application
    Filed: October 1, 2014
    Publication date: September 22, 2016
    Inventors: Richard A. Wade, James D. Cook
  • Patent number: 9410861
    Abstract: A pressure sensor may include an input for receiving an input pressure and a sense die having a sense diaphragm that is exposed to the input pressure and is configured to deflect in response to the input pressure. A diaphragm stop may be positioned adjacent to a first side of the sense diaphragm to limit deflection of the sense diaphragm towards the diaphragm stop. The diaphragm stop include a plurality of defined projections to help prevent stiction.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: August 9, 2016
    Assignee: Honeywell International Inc.
    Inventor: Richard Wade
  • Patent number: 9164003
    Abstract: A force sensor system includes a housing assembly, a sensor, an actuator, and an actuator travel stop. The sensor is disposed within the housing assembly, and is configured to generate a sensor signal representative of a force supplied to the sensor. The actuator is disposed at least partially within, and is movable relative to, the housing assembly. The actuator extends from the housing assembly and is adapted to receive an input force. The actuator is configured, upon receipt of the input force, to move toward, and transfer the input force to, the sensor. The actuator travel stop is disposed within the housing assembly, and between the housing assembly and a portion of the actuator. The actuator travel stop is configured to be selectively engaged by the actuator and, upon engagement by the actuator, to limit movement of the actuator toward, and the input force transferred to, the sensor.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: October 20, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventor: Richard A. Wade
  • Publication number: 20150276526
    Abstract: A pressure sensor may include an input for receiving an input pressure and a sense die having a sense diaphragm that is exposed to the input pressure and is configured to deflect in response to the input pressure. A diaphragm stop may be positioned adjacent to a first side of the sense diaphragm to limit deflection of the sense diaphragm towards the diaphragm stop. The diaphragm stop include a plurality of defined projections to help prevent stiction.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 1, 2015
    Inventor: Richard Wade
  • Patent number: 9052246
    Abstract: Apparatus and associated methods relate to a preloaded force sensor, the preloaded force being greater than a force threshold separating a non-linear response region of sensor operation from a substantially linear response region of sensor operation. In an illustrative embodiment, the total applied force includes the preloaded force and an externally-applied force, the preloaded force being predetermined such that electrical signal response is substantially linear for positive externally-applied forces which when added to the preload force do not exceed the maximum force. In some embodiments, the externally-applied force may be transferred to a force-sensing die via a force-transfer member. In an exemplary embodiment, a spring having a predetermined spring coefficient may apply the predetermined preload force to the force-transfer member. In an exemplary embodiment, externally-applied positive forces may be simply calibrated using gain and offset corrections.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: June 9, 2015
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Ian Bentley, Jason Dennis Patch, Lamar Floyd Ricks
  • Publication number: 20150128729
    Abstract: Apparatus and associated methods relate to a preloaded force sensor, the preloaded force being greater than a force threshold separating a non-linear response region of sensor operation from a substantially linear response region of sensor operation. In an illustrative embodiment, the total applied force includes the preloaded force and an externally-applied force, the preloaded force being predetermined such that electrical signal response is substantially linear for positive externally-applied forces which when added to the preload force do not exceed the maximum force. In some embodiments, the externally-applied force may be transferred to a force-sensing die via a force-transfer member. In an exemplary embodiment, a spring having a predetermined spring coefficient may apply the predetermined preload force to the force-transfer member. In an exemplary embodiment, externally-applied positive forces may be simply calibrated using gain and offset corrections.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: Honeywell International Inc.
    Inventors: Richard Wade, Ian Bentley, Jason Dennis Patch, Lamar Floyd Ricks
  • Patent number: 9003897
    Abstract: A force sensor may include a housing having a cavity enclosing a sense die, an actuating element and an elastomeric seal. The sense die may have a force sensing element for sensing a force applied to a surface of the sense die, and a temperature compensation circuit. The temperature compensation circuit may be located on the surface of the sense die and may be configured to at least partially compensate for the temperature sensitivity of the force sensing element. The actuating element may extend outside the housing and be used to transfer a force applied externally from the housing to the sense die. The elastomeric seal may include one or more conductive elements separated from the edge of the elastomeric seal by an insulating elastomeric material.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 14, 2015
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Lamar Floyd Ricks
  • Patent number: 9003899
    Abstract: A force sensor may include a sensing die with a sense diaphragm. An actuation assembly may include a button member and a pin and/or other features, where a first end of the pin may engage the sense diaphragm and a second end of the pin may engage the button to facilitate transferring a force applied to the button to the sense diaphragm. In some cases, the interface between the button member and the pin may allow the button member to swivel or pivot, at least to some degree, relative to the pin, which may facilitate transferring a force from the button member to the diaphragm with minimal mechanical loss. In some cases, the second end of the pin may be at least partially tapered, with the taper engaging the edge of an indentation in the button.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 14, 2015
    Assignee: Honeywell International Inc.
    Inventor: Richard Wade