Patents by Inventor Richard Wallingford

Richard Wallingford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120268735
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 25, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 8223327
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 17, 2012
    Assignee: KLA-Tencor Corp.
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Patent number: 8204296
    Abstract: Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer are provided. One computer-implemented method for generating a standard reference die for use in a die to standard reference die inspection includes acquiring output of an inspection system for a centrally located die on a wafer and one or more dies located on the wafer. The method also includes combining the output for the centrally located die and the one or more dies based on within die positions of the output. In addition, the method includes generating the standard reference die based on results of the combining step.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 19, 2012
    Assignee: KLA-Tencor Corp.
    Inventors: Kris Bhaskar, Mark McCord, Santosh Bhattacharyya, Ardis Liang, Richard Wallingford, Hubert Altendorfer, Kais Maayah
  • Patent number: 8049877
    Abstract: Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 1, 2011
    Assignee: KLA-Tencor Corp.
    Inventors: Richard Wallingford, Stephanie Chen, Jason Kirkwood, Tao Luo, Yong Zhang, Lisheng Gao
  • Patent number: 8000905
    Abstract: Computer-implemented methods, carrier media, and systems for determining sizes of defects detected on a wafer are provided. One computer-implemented method includes separating the defects into groups based on output acquired for the defects by multiple channels of an inspection system used to detect the defects on the wafer. The method also includes separating the defects in one or more of the groups into subgroups based on the output acquired for the defects by one or more of the multiple channels. In addition, the method includes determining the sizes of one or more of the defects in one or more of the subgroups separately based on the output acquired for the defects by only one of the multiple channels and a calibration parameter. The calibration parameter is different for each of the subgroups and is acquired by using another system to measure actual sizes of defects detected on other wafers.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 16, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Stephanie Chen, Subramanian Balakrishnan, Richard Wallingford
  • Patent number: 7925072
    Abstract: Methods for identifying array areas in dies formed on a wafer and methods for setting up such methods are provided. One method for identifying array areas in dies formed on a wafer includes comparing an array pattern in a template image acquired in one of the array areas to a search area image acquired for the wafer. The method also includes determining areas in the search area image in which a pattern is formed that substantially matches the array pattern in the template image based on results of the comparing step. In addition, the method includes identifying the array areas in the dies formed on the wafer based on results of the determining step.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Chien-Huei (Adam) Chen, Ajay Gupta, Richard Wallingford, Kaustubh (Kaust) Namjoshi, Mike Van Riet, Michael Cook
  • Publication number: 20100329540
    Abstract: Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer are provided. One computer-implemented method for generating a standard reference die for use in a die to standard reference die inspection includes acquiring output of an inspection system for a centrally located die on a wafer and one or more dies located on the wafer. The method also includes combining the output for the centrally located die and the one or more dies based on within die positions of the output. In addition, the method includes generating the standard reference die based on results of the combining step.
    Type: Application
    Filed: September 14, 2010
    Publication date: December 30, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Kris Bhaskar, Mark McCord, Santosh Bhattacharyya, Ardis Liang, Richard Wallingford, Hubert Altendorfer, Kais Maayah
  • Patent number: 7796804
    Abstract: Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer are provided. One computer-implemented method for generating a standard reference die for use in a die to standard reference die inspection includes acquiring output of an inspection system for a centrally located die on a wafer and one or more dies located on the wafer. The method also includes combining the output for the centrally located die and the one or more dies based on within die positions of the output. In addition, the method includes generating the standard reference die based on results of the combining step.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 14, 2010
    Assignee: KLA-Tencor Corp.
    Inventors: Kris Bhaskar, Mark McCord, Santosh Bhattacharyya, Ardis Liang, Richard Wallingford, Hubert Altendorfer, Kais Maayah
  • Publication number: 20100188657
    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Lu Chen, Jason Kirkwood, Mohan Mahadevan, James A. Smith, Lisheng Gao, Junqing (Jenny) Huang, Tao Luo, Richard Wallingford
  • Publication number: 20090284733
    Abstract: Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
    Type: Application
    Filed: May 14, 2008
    Publication date: November 19, 2009
    Inventors: Richard Wallingford, Stephanie Chen, Jason Kirkwood, Tao Luo, Yong Zhang, Lisheng Gao
  • Publication number: 20090041332
    Abstract: Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer are provided. One computer-implemented method for generating a standard reference die for use in a die to standard reference die inspection includes acquiring output of an inspection system for a centrally located die on a wafer and one or more dies located on the wafer. The method also includes combining the output for the centrally located die and the one or more dies based on within die positions of the output. In addition, the method includes generating the standard reference die based on results of the combining step.
    Type: Application
    Filed: July 18, 2008
    Publication date: February 12, 2009
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Kris Bhaskar, Mark McCord, Santosh Bhattacharyya, Ardis Liang, Richard Wallingford, Hubert Altendorfer, Kais Maayah
  • Publication number: 20090037134
    Abstract: Various methods, carrier media, and systems for monitoring a characteristic of a specimen are provided. One computer-implemented method for monitoring a characteristic of a specimen includes determining a property of individual pixels on the specimen using output generated by inspecting the specimen with an inspection system. The method also includes determining a characteristic of individual regions on the specimen using the properties of the individual pixels in the individual regions. The method further includes monitoring the characteristic of the specimen based on the characteristics of the individual regions.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Inventors: Ashok Kulkarni, Chien-Huei (Adam) Chen, Cecelia Campochiaro, Richard Wallingford, Yong Zhang, Brian Duffy
  • Publication number: 20080219545
    Abstract: Methods for identifying array areas in dies formed on a wafer and methods for setting up such methods are provided. One method for identifying array areas in dies formed on a wafer includes comparing an array pattern in a template image acquired in one of the array areas to a search area image acquired for the wafer. The method also includes determining areas in the search area image in which a pattern is formed that substantially matches the array pattern in the template image based on results of the comparing step. In addition, the method includes identifying the array areas in the dies formed on the wafer based on results of the determining step.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Inventors: Chien-Huei Adam Chen, Ajay Gupta, Richard Wallingford, Kaustubh Kaust Namjoshi, Mike Van Riet, Michael Cook
  • Publication number: 20070124095
    Abstract: An inspection system for detecting anomalies on a substrate. The inspection system has a sensor array for generating image data. A first high speed network is coupled to the sensor array and receives and communicates the image data. An array of process nodes is coupled to the first high speed network, and receives and processes the image data to produce anomaly reports. Each process node has an interface card coupled to the first high speed network, that receives the image data from the first high speed network and formats the image data according to a high speed interface bus protocol. The interface card sets a register indicating whether a predetermined amount of image data has been stored in a memory, and the process node reads the register to determine whether the predetermined amount of image data has been stored in the memory, and initiates image processing when the register indicates that the predetermined amount of image data has been stored in the memory.
    Type: Application
    Filed: January 12, 2007
    Publication date: May 31, 2007
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Krishnamurthy Bhaskar, Mark Roulo, John Taylor, Lawrence Miller, Paul Russell, Jason Lin, Eliezer Rosengaus, Richard Wallingford, Kishore Bubna
  • Publication number: 20070005284
    Abstract: An inspection system for detecting anomalies on a substrate. The inspection system has a sensor array for generating image data. A first high speed network is coupled to the sensor array and receives and communicates the image data. An array of process nodes is coupled to the first high speed network, and receives and processes the image data to produce anomaly reports. Each process node has an interface card coupled to the first high speed network, that receives the image data from the first high speed network and formats the image data according to a high speed interface bus protocol. A high speed interface bus is coupled to the interface card, receives the image data from the interface card. A computer is coupled to the high speed interface bus, and receives the image data from the high speed interface bus and processes the image data according to an algorithm, to produce the anomaly report.
    Type: Application
    Filed: September 8, 2006
    Publication date: January 4, 2007
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Krishnamurthy Bhaskar, Mark Roulo, John Taylor, Lawrence Miller, Paul Russell, Jason Lin, Eliezer Rosengaus, Richard Wallingford, Kishore Bubna
  • Publication number: 20060106580
    Abstract: An inspection system for detecting anomalies on a substrate. The inspection system has a sensor array for generating image data. A first high speed network is coupled to the sensor array and receives and communicates the image data. An array of process nodes is coupled to the first high speed network, and receives and processes the image data to produce anomaly reports. Each of the process nodes has an amount of memory that is sufficient to receive image data representing a plurality of dice on an integrated circuit wafer, and each of the process nodes performs analysis on the plurality of dice. Each process node has an interface card coupled to the first high speed network, that receives the image data from the first high speed network and formats the image data according to a high speed interface bus protocol. A high speed interface bus is coupled to the interface card, receives the image data from the interface card.
    Type: Application
    Filed: December 21, 2005
    Publication date: May 18, 2006
    Inventors: Krishnamurthy Bhaskar, Mark Roulo, John Taylor, Lawrence Miller, Paul Russell, Jason Lin, Eliezer Rosengaus, Richard Wallingford, Kishore Bubna