Patents by Inventor Ricky B. Steck

Ricky B. Steck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10681794
    Abstract: In one embodiment, an x-ray tube 15 can be used closer to a sample. An angle A1 between an anode axis 02 and an electron-beam axis 01 can be ?10° and ?80° and an angle A2 between the anode axis 02 and an x-ray axis 03 can be ?10° and ?80°. In another embodiment, a cap 20 on an anode 12 can block x-rays emitted in undesired directions. The cap 20 can include an internal cavity 24, an electron-beam hole 21, an anode hole 22, and an x-ray hole 23. In another embodiment, an electrical connection between an x-ray tube 15 and a power supply 18 can be reliable and easy to manufacture. The anode 12 can include a hole 31 at an end of the anode 12 sized and shaped for insertion of an electrical connector 32.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: June 9, 2020
    Assignee: Moxtek, Inc.
    Inventors: Ricky B. Steck, Brad Harris
  • Publication number: 20200163195
    Abstract: In one embodiment, an x-ray tube 15 can be used closer to a sample. An angle A1 between an anode axis 02 and an electron-beam axis 01 can be ?10° and ?80° and an angle A2 between the anode axis 02 and an x-ray axis 03 can be ?10° and ?80°. In another embodiment, a cap 20 on an anode 12 can block x-rays emitted in undesired directions. The cap 20 can include an internal cavity 24, an electron-beam hole 21, an anode hole 22, and an x-ray hole 23. In another embodiment, an electrical connection between an x-ray tube 15 and a power supply 18 can be reliable and easy to manufacture. The anode 12 can include a hole 31 at an end of the anode 12 sized and shaped for insertion of an electrical connector 32.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Ricky B. Steck, Brad Harris
  • Patent number: 10624195
    Abstract: In one embodiment, an x-ray tube 15 can be used closer to a sample. An angle A1 between an anode axis 02 and an electron-beam axis 01 can be ?10° and ?80° and an angle A2 between the anode axis 02 and an x-ray axis 03 can be ?10° and ?80°. In another embodiment, a cap 20 on an anode 12 can block x-rays emitted in undesired directions. The cap 20 can include an internal cavity 24, an electron-beam hole 21, an anode hole 22, and an x-ray hole 23. In another embodiment, an electrical connection between an x-ray tube 15 and a power supply 18 can be reliable and easy to manufacture. The anode 12 can include a hole 31 at an end of the anode 12 sized and shaped for insertion of an electrical connector 32.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 14, 2020
    Assignee: Moxtek, Inc.
    Inventors: Ricky B. Steck, Brad Harris
  • Patent number: 10602600
    Abstract: An x-ray source can include a housing with material with an atomic number of ?42 and a thermal conductivity of ?3 W/(m*K) to assist in removing heat from the x-ray source and to block x-rays emitted in undesirable directions. An x-ray source can include a shell that is electrically conductive and that encloses at least part of a voltage multiplier without enclosing a control circuit to minimize or eliminate electromagnetic interference in the control circuitry caused by the voltage multiplier. An x-ray source can include a negative voltage multiplier, a positive voltage multiplier, and a ground plane between the negative voltage multiplier and the positive voltage multiplier. The ground plane can minimize or eliminate electromagnetic interference between the negative voltage multiplier and the positive voltage multiplier. An air-filled channel, associated with the ground plane, can reduce weight of the x-ray source.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 24, 2020
    Assignee: Moxtek, Inc.
    Inventors: Ricky B. Steck, Gordon Ernest Smith, Eric Miller, David S. Hoffman
  • Publication number: 20190182943
    Abstract: An x-ray source can include a housing with material with an atomic number of 42 and a thermal conductivity of ?3 W/(m*K) to assist in removing heat from the x-ray source and to block x-rays emitted in undesirable directions. An x-ray source can include a shell that is electrically conductive and that encloses at least part of a voltage multiplier without enclosing a control circuit to minimize or eliminate electromagnetic interference in the control circuitry caused by the voltage multiplier. An x-ray source can include a negative voltage multiplier, a positive voltage multiplier, and a ground plane between the negative voltage multiplier and the positive voltage multiplier. The ground plane can minimize or eliminate electromagnetic interference between the negative voltage multiplier and the positive voltage multiplier. An air-filled channel, associated with the ground plane, can reduce weight of the x-ray source.
    Type: Application
    Filed: October 29, 2018
    Publication date: June 13, 2019
    Inventors: Ricky B. Steck, Gordon Ernest Smith, Eric Miller, David S. Hoffman
  • Publication number: 20190132936
    Abstract: In one embodiment, an x-ray tube 15 can be used closer to a sample. An angle A1 between an anode axis 02 and an electron-beam axis 01 can be ?10° and ?80° and an angle A2 between the anode axis 02 and an x-ray axis 03 can be ?10° and ?80°. In another embodiment, a cap 20 on an anode 12 can block x-rays emitted in undesired directions. The cap 20 can include an internal cavity 24, an electron-beam hole 21, an anode hole 22, and an x-ray hole 23. In another embodiment, an electrical connection between an x-ray tube 15 and a power supply 18 can be reliable and easy to manufacture. The anode 12 can include a hole 31 at an end of the anode 12 sized and shaped for insertion of an electrical connector 32.
    Type: Application
    Filed: September 27, 2018
    Publication date: May 2, 2019
    Inventors: Ricky B. Steck, Brad Harris
  • Patent number: 7134849
    Abstract: A mechanical pump having a unitary construction such that the fluid being pumped is prevented from leaking without requiring the use of discrete seal elements. The absence of discrete seal elements and integral coupling of various components of the pump substantially reduces the likelihood of failure of potential leak points. This allows the pump to operate continuously for a longer period and with greater reliability than previously utilized pumps. The pump can be utilized in a greater number of applications without requiring special design consideration for the fluid being pumped. The absence of discrete seal elements also reduces the cost and complexity of manufacturing the pump.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 14, 2006
    Assignee: Trebor International, Inc.
    Inventors: Ricky B. Steck, Michael Dunn
  • Patent number: 7021909
    Abstract: A pneumatic oscillator for providing pumping force to a pump. The oscillator has a single valve for controlling both the rate of oscillation of the oscillator and the flow of air. The valve includes a shuttle member and a detent mechanism. The detent mechanism controls the air flow in the oscillator and to the pump to which the oscillator is attached and the detent mechanism for regulating oscillation of the shuttle member. The configuration of the shuttle member and the detent mechanism eliminates the need for an additional valve to regulate oscillation of the oscillator. A cycle controller corresponding with the detent mechanism is adapted to change the rate of oscillation of shuttle member such that the need for additional valves or controllers for regulating the rate of oscillation is obviated.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 4, 2006
    Assignee: Trebor International, Inc.
    Inventor: Ricky B. Steck
  • Patent number: 6957952
    Abstract: A fiber optic system for detecting a stroke of a pump, the fiber optic system including a first fiber optic line configured for directing light onto a portion of the pump that moves during the stroke of the pump. The system further includes a second fiber optic line configured for receiving light that has been transmitted from the first fiber optic line and reflected by the portion of the pump, wherein receipt of the light by the second fiber optic line occurs at a specified point during the stroke of the pump. The moving portion of the pump may be the diaphragm, the reciprocating portion, or any other part of the pump that cycles at regular intervals as the pump operates.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: October 25, 2005
    Assignee: Trebor International, Inc.
    Inventors: Ricky B. Steck, Michael Dunn, Troy Orr, Matthew Stillings, David Kingsbury
  • Patent number: 6695593
    Abstract: A pump for ultra-pure fluids comprises a flexible diaphragm separating a fluid chamber from an air chamber. The diaphragm creates an airtight seal between the fluid chamber and the air chamber. Any leak from the fluid chamber into the air chamber is detected by a fiber optic system comprising an element and two optical fibers that are disposed such that light is detected by the second optical fiber only when the element is not in contact with liquid. A second fiber optic system can also be used to determine the stroke of an oscillating member by disposing the fiber optic lines at an angle calculated to reflect light off of the oscillating member when the member arrives at a predetermined location. The fiber optics are adapted to be resistant to corrosion, non-igniting, and non-contaminating.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: February 24, 2004
    Assignee: Trebor International, Inc.
    Inventors: Ricky B. Steck, Michael Dunn, Troy Orr, Matthew Stillings, David Kingsbury
  • Patent number: 6402486
    Abstract: A pump for ultra-pure fluids comprises a flexible diaphragm separating a fluid chamber from an air chamber. The diaphragm creates an airtight seal between the fluid chamber and the air chamber when a self-centering and trapezoidal shaped wedge compressively forces the diaphragm into a trapezoidal shaped perimeter cavity surrounding the chambers. Any leak from the fluid chamber into the air chamber is detected by a fiber optic system comprising two optical fibers that are disposed at an angle that is calculated to enable light to pass between the fibers only in the presence of a liquid having a predetermined index of refraction. The fiber optic system can also be used to determine the stroke of the pump by disposing the fiber optic lines at an angle calculated to reflect light off of the oscillating diaphragm when the diaphragm arrives at a predetermined location.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: June 11, 2002
    Assignee: Trebor International, Inc.
    Inventors: Ricky B. Steck, Michael R. Dunn, Troy Orr, Matthew J. Stillings, David Kingsbury
  • Publication number: 20020021974
    Abstract: A pump for ultra-pure fluids comprises a flexible diaphragm separating a fluid chamber from an air chamber. The diaphragm creates an airtight seal between the fluid chamber and the air chamber when a self-centering and trapezoidal shaped wedge compressively forces the diaphragm into a trapezoidal shaped perimeter cavity surrounding the chambers. Any leak from the fluid chamber into the air chamber is detected by a fiber optic system comprising two optical fibers that are disposed at an angle that is calculated to enable light to pass between the fibers only in the presence of a liquid having a predetermined index of refraction. The fiber optic system can also be used to determine the stroke of the pump by disposing the fiber optic lines at an angle calculated to reflect light off of the oscillating diaphragm when the diaphragm arrives at a predetermined location.
    Type: Application
    Filed: September 4, 2001
    Publication date: February 21, 2002
    Inventors: Ricky B. Steck, Michael R. Dunn, Troy Orr, Matthew J. Stillings, David Kingsbury
  • Patent number: 6106246
    Abstract: A pump for ultra-pure fluids, such as hot, de-ionized water, processing acids, and the like, such as those used in the semiconductor processing industries, is designed to operate at greater than 10 and often 30 or 50 million cycles without failure, and to be failclean. A diaphragm pump maintains a free diaphragm, supported in a contoured chamber for driving and being driven by a piston, able to move radially, rather than absorbing misalignment or distortions. A self-energizing, self-centering, trapezoidal seal captures a constant-thickness diaphragm between a head and body forming the chamber of the pump, separating a body portion and a head portion. An oriented, calendered, multi-layered chlorofluorocarbon diaphragm may be the same material chemically as the body, head, or both. Non-reactive pilots control an operating (motive) fluid, detecting the end-of-stroke whether near the head or near the body.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: August 22, 2000
    Assignee: Trebor International, Inc.
    Inventors: Ricky B. Steck, Michael R. Dunn, Troy Orr, Matthew J. Stillings, David Kingsbury
  • Patent number: 4902350
    Abstract: Apparatus and method for cleaning, rinsing and drying thin wafers such as silicon wafers or other disc-like substrates or elements wherein the wafers are rinsed in a hot water bath while supported in a conventional slotted carrier. The wafers are cleaned and rinsed while being moved through a planar beam of sonic energy in a water bath. Drying of the wafers is achieved by slowly raising the wafers out of the water bath such that the water surface tension at the surface of the water bath evenly and effectively draws off water from the rinsing surfaces of the wafers. A novel lift mechanism is provided for moving the wafers through the beam of sonic energy in the water bath and for slowly lifting the wafers and the cassette in independent movements through the surface of the water such that there is no contact between the wafers and the cassette or between the cassette and any other object at the point where the cassette and wafers move through the surface of the water.
    Type: Grant
    Filed: September 9, 1987
    Date of Patent: February 20, 1990
    Assignee: Robert F. Orr
    Inventor: Ricky B. Steck
  • Patent number: 4722752
    Abstract: Apparatus and method for rinsing and drying thin wafers such as silicon wafers or other disc-like substrates or elements wherein the wafers are rinsed in a hot water bath while supported in a conventional slotted carrier. The wafers are dried by slowly, raising the wafers out of the water bath such that the water surface tension at the surface of the water bath evenly and effectively draws off water from the rising surfaces of the wafers. A novel lift mechanism is provided for slowly and independently lifting the wafers and the cassette in which the wafers were supported during rinsing through the surface of the water such that there is no contact between the wafers and the cassette or between the wafers and any other object or between the cassette and any other object at the point where the cassette and wafers move through the surface of the water.
    Type: Grant
    Filed: June 16, 1986
    Date of Patent: February 2, 1988
    Assignee: Robert F. Orr
    Inventor: Ricky B. Steck