Patents by Inventor Ricky Lap Kei Cheung

Ricky Lap Kei Cheung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923889
    Abstract: Various embodiments include methods and systems having detection apparatus operable to cancel or reduce leakage signal originating from a source signal being generated and transmitted from a transmitter. A leakage cancellation signal can be generated digitally, converted to an analog signal, and then subtracted in the analog domain from a received signal to provide a leakage-reduced signal for use in detection and analysis of objects. A digital cancellation signal may be generated by generating a cancellation signal in the frequency domain and converting it to the time domain. Optionally, an estimate of a residual leakage signal can be generated and applied to reduce residual leakage remaining in the leakage-reduced signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: March 5, 2024
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Patent number: 11791847
    Abstract: Embodiments of this disclosure provide a system and method for wireless communication and wireless sensing in a low-cost common transceiver structure. In particular, the common transceiver structure may have a common digital-to-analog converter (DAC) configured to convert a digital wireless communication signal and a digital wireless sensing signal into an analog wireless communication signal and an analog wireless sensing signal, respectively. The common transceiver may also have a common transmitting antenna configured to transmit the analog wireless communication signal and the analog wireless sensing signal.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 17, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Luzhou Xu, Ricky Lap Kei Cheung, Hsing Kuo Lo, Yan Li, Yuan Su
  • Publication number: 20230008841
    Abstract: Various embodiments include methods and systems having detection apparatus operable to cancel or reduce leakage signal originating from a source signal being generated and transmitted from a transmitter. A leakage cancellation signal can be generated digitally, converted to an analog signal, and then subtracted in the analog domain from a received signal to provide a leakage-reduced signal for use in detection and analysis of objects. A digital cancellation signal may be generated by generating a cancellation signal in the frequency domain and converting it to the time domain. Optionally, an estimate of a residual leakage signal can be generated and applied to reduce residual leakage remaining in the leakage-reduced signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Application
    Filed: September 27, 2022
    Publication date: January 12, 2023
    Applicant: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Patent number: 11476891
    Abstract: Various embodiments include methods and systems having detection apparatus operable to cancel or reduce leakage signal originating from a source signal being generated and transmitted from a transmitter. A leakage cancellation signal can be generated digitally, converted to an analog signal, and then subtracted in the analog domain from a received signal to provide a leakage-reduced signal for use in detection and analysis of objects. A digital cancellation signal may be generated by generating a cancellation signal in the frequency domain and converting it to the time domain. Optionally, an estimate of a residual leakage signal can be generated and applied to reduce residual leakage remaining in the leakage-reduced signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: October 18, 2022
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Patent number: 11444820
    Abstract: An apparatus for correcting a deviation between a plurality of transmission channels includes a first transmission channel and a second transmission channel. The apparatus also includes a phase offset unit configured to set a phase offset between the first transmission channel and the second transmission channel such that a phase deviation between the first transmission channel and the second transmission channel deviates from zero, a power detection unit configured to detect signal powers of the first transmission channel and the second transmission channel under the phase offset, a processing unit configured to determine, based on the detected signal powers, a deviation correction value between the first transmission channel and the second transmission channel, where the deviation correction value includes a phase correction value, and a phase correction unit configured to set the phase correction value between the first transmission channel and the second transmission channel.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: September 13, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mu Zhou, Ricky Lap Kei Cheung, Yi Cao
  • Patent number: 11190953
    Abstract: The disclosure relates to technology beam steering in which one or more antennas are configured to form a beam directed to a first beam direction based on a configuration corresponding to an environment. A change in direction of the beam is identified in response to a change in orientation of user equipment, the change in orientation determined via one or more sensors in the user equipment, and a second beam direction is calculated based on a the first beam direction and the change in orientation of the user equipment. The one or more antennas are then configured by steering the beam to the second beam direction to compensate for the change in orientation of the user equipment.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 30, 2021
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xiaoyin He, Ping Shi, Ricky Lap Kei Cheung
  • Publication number: 20210336638
    Abstract: Embodiments of this disclosure provide a system and method for wireless communication and wireless sensing in a low-cost common transceiver structure. In particular, the common transceiver structure may have a common digital-to-analog converter (DAC) configured to convert a digital wireless communication signal and a digital wireless sensing signal into an analog wireless communication signal and an analog wireless sensing signal, respectively. The common transceiver may also have a common transmitting antenna configured to transmit the analog wireless communication signal and the analog wireless sensing signal.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Inventors: Luzhou Xu, Ricky Lap Kei Cheung, Hsing Kuo Lo, Yan Li, Yuan Su
  • Publication number: 20210266217
    Abstract: An apparatus for correcting a deviation between a plurality of transmission channels includes a first transmission channel and a second transmission channel. The apparatus also includes a phase offset unit configured to set a phase offset between the first transmission channel and the second transmission channel such that a phase deviation between the first transmission channel and the second transmission channel deviates from zero, a power detection unit configured to detect signal powers of the first transmission channel and the second transmission channel under the phase offset, a processing unit configured to determine, based on the detected signal powers, a deviation correction value between the first transmission channel and the second transmission channel, where the deviation correction value includes a phase correction value, and a phase correction unit configured to set the phase correction value between the first transmission channel and the second transmission channel.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 26, 2021
    Inventors: Mu Zhou, Ricky Lap Kei Cheung, Yi Cao
  • Publication number: 20210215816
    Abstract: A radar system transmits pulses towards a target and receives pulses reflected back therefrom. Based on samples (of the received pulses) corresponding to a CPI, a first 2D matrix having a slow-time index and a fast-time index is generated. A slow-time FFT is performed to convert the slow-time index to a Doppler bin index to produce a second 2D matrix having the Doppler bin index and the fast-time index. Thereafter, a 1D interpolation is performed along the Doppler bin index to produce a third 2D matrix having a Velocity bin index and the fast-time index. Thereafter, a fast-time FFT is performed to convert the fast-time index to a Range bin index to produce a fourth 2D matrix having the Velocity bin index and a Range bin index. A distance to and a velocity of a target is determined based on the fourth 2D matrix.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 15, 2021
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Luzhou Xu, Ricky Lap Kei Cheung, Hsing Kuo Lo, Jianghua Ying, Yuan Su
  • Patent number: 10944618
    Abstract: An apparatus includes a phase offset unit configured to set a phase offset between the first transmission channel and the second transmission channel such that a phase deviation between the first transmission channel and the second transmission channel deviates from zero, a power detection unit configured to detect signal powers of the first transmission channel and the second transmission channel under the phase offset, a processing unit configured to determine, based on the detected signal powers, a deviation correction value between the first transmission channel and the second transmission channel, where the deviation correction value includes a phase correction value, and a phase correction unit configured to set the phase correction value between the first transmission channel and the second transmission channel.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 9, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mu Zhou, Ricky Lap Kei Cheung, Yi Cao
  • Publication number: 20200328929
    Abstract: An apparatus includes a phase offset unit configured to set a phase offset between the first transmission channel and the second transmission channel such that a phase deviation between the first transmission channel and the second transmission channel deviates from zero, a power detection unit configured to detect signal powers of the first transmission channel and the second transmission channel under the phase offset, a processing unit configured to determine, based on the detected signal powers, a deviation correction value between the first transmission channel and the second transmission channel, where the deviation correction value includes a phase correction value, and a phase correction unit configured to set the phase correction value between the first transmission channel and the second transmission channel.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Mu Zhou, Ricky Lap Kei Cheung, Yi Cao
  • Patent number: 10778250
    Abstract: Processors are arranged in a pipeline structure to operate on multiple layers of data, each layer comprising multiple groups of data. An input to a memory is coupled to an output of the last processor in the pipeline, and the memory's output is coupled to an input of the first processor in the pipeline. Multiplexing and de-multiplexing operations are performed in the pipeline. For each group in each layer, a stored result read from the memory is applied to the first processor in the pipeline structure. A calculated result of the stored result is output at the last processor and stored in the memory. Once processing for the last group of data in a first layer is completed, the corresponding processor is configured to process data in a next layer before the pipeline finishes processing the first layer. The stored result obtained from the next layer comprises a calculated result produced from a layer previous to the first layer.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 15, 2020
    Assignee: TensorCom, Inc.
    Inventors: Bo Xia, Ricky Lap Kei Cheung, Bo Lu
  • Publication number: 20200287587
    Abstract: Various embodiments include methods and systems having a frequency-modulated continuous wave radar operable to compensate a return signal for nonlinearity in the associated radar signal that is transmitted. The radar signal can be mixed with a delayed version of the radar signal such that the mixed signal can be used to generate an estimate of the nonlinearity. The estimate can be used to compensate the return signal from an object that reflects the associated transmitted radar signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 10, 2020
    Applicant: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Patent number: 10637517
    Abstract: Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: April 28, 2020
    Assignee: TensorCom, Inc.
    Inventors: KhongMeng Tham, Huainan Ma, Zaw Soe, Ricky Lap Kei Cheung
  • Patent number: 10594358
    Abstract: Various embodiments include methods and systems having detection apparatus operable to cancel or reduce leakage signal originating from a source signal being generated and transmitted from a transmitter. A leakage cancellation signal can be generated digitally, converted to an analog signal, and then subtracted in the analog domain from a received signal to provide a leakage-reduced signal for use in detection and analysis of objects. A digital cancellation signal may be generated by generating a cancellation signal in the frequency domain and converting it to the time domain. Optionally, an estimate of a residual leakage signal can be generated and applied to reduce residual leakage remaining in the leakage-reduced signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 17, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Patent number: 10422856
    Abstract: Various embodiments include methods and systems having a frequency-modulated continuous wave radar operable to compensate a return signal for nonlinearity in the associated radar signal that is transmitted. The radar signal can be mixed with a delayed version of the radar signal such that the mixed signal can be used to generate an estimate of the nonlinearity. The estimate can be used to compensate the return signal from an object that reflects the associated transmitted radar signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: September 24, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ricky Lap Kei Cheung, Luzhou Xu, Lixi Wu, Hsing Kuo Lo, Yuan Su
  • Publication number: 20190222227
    Abstract: Processors are arranged in a pipeline structure to operate on multiple layers of data, each layer comprising multiple groups of data. An input to a memory is coupled to an output of the last processor in the pipeline, and the memory's output is coupled to an input of the first processor in the pipeline. Multiplexing and de-multiplexing operations are performed in the pipeline. For each group in each layer, a stored result read from the memory is applied to the first processor in the pipeline structure. A calculated result of the stored result is output at the last processor and stored in the memory. Once processing for the last group of data in a first layer is completed, the corresponding processor is configured to process data in a next layer before the pipeline finishes processing the first layer. The stored result obtained from the next layer comprises a calculated result produced from a layer previous to the first layer.
    Type: Application
    Filed: February 15, 2019
    Publication date: July 18, 2019
    Inventors: Bo Xia, Ricky Lap Kei Cheung, Bo Lu
  • Publication number: 20190150003
    Abstract: The disclosure relates to technology beam steering in which one or more antennas are configured to form a beam directed to a first beam direction based on a configuration corresponding to an environment. A change in direction of the beam is identified in response to a change in orientation of user equipment, the change in orientation determined via one or more sensors in the user equipment, and a second beam direction is calculated based on a the first beam direction and the change in orientation of the user equipment. The one or more antennas are then configured by steering the beam to the second beam direction to compensate for the change in orientation of the user equipment.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 16, 2019
    Applicant: Futurewei Technologies, Inc.
    Inventors: Xiaoyin He, Ping Shi, Ricky Lap Kei Cheung
  • Patent number: 10250280
    Abstract: Processors are arranged in a pipeline structure to operate on multiple layers of data, each layer comprising multiple groups of data. An input to a memory is coupled to an output of the last processor in the pipeline, and the memory's output is coupled to an input of the first processor in the pipeline. Multiplexing and de-multiplexing operations are performed in the pipeline. For each group in each layer, a stored result read from the memory is applied to the first processor in the pipeline structure. A calculated result of the stored result is output at the last processor and stored in the memory. Once processing for the last group of data in a first layer is completed, the corresponding processor is configured to process data in a next layer before the pipeline finishes processing the first layer. The stored result obtained from the next layer comprises a calculated result produced from a layer previous to the first layer.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 2, 2019
    Assignee: TensorCom, Inc.
    Inventors: Bo Xia, Ricky Lap Kei Cheung, Bo Lu
  • Publication number: 20190007076
    Abstract: Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: KhongMeng Tham, Huainan Ma, Zaw Soe, Ricky Lap Kei Cheung