Patents by Inventor Rihito Kaneko

Rihito Kaneko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170074154
    Abstract: An engine cooling system includes a coolant circuit, a multi-way valve, a relief route and a relief valve. The coolant circuit includes a first route and a second route into which the coolant circuit is branched off at a branched position. The first route passes through a radiator. The multi-way valve is provided at the branched position. The relief route sets a relief source to a portion downstream of a pump and upstream of the multi-way valve in the coolant circuit, sets a relief destination to a portion downstream of the radiator in the first route, and causes coolant to flow from the relief source to the relief destination so as to bypass the multi-way valve. The relief valve interrupts circulation of coolant through the relief route when the relief valve is closed, and permits circulation of coolant through the relief route when the relief valve is open.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito KANEKO, Noboru TAKAGI, lsao TAKAGI, Naoya KAWAMOTO, Kenji KIMURA, Shinji YUMI
  • Publication number: 20160215721
    Abstract: A drive system for fuel injection valves includes a battery, a capacitor, a drive control unit and an electronic control unit. The electronic control unit is configured to, when an energization start interval between a start of energization of a last one of the fuel injection valves and a start of energization of a current one of the fuel injection valves is longer than or equal to a peak reaching time of a last one of the fuel injection valves, extend an energization time of the current one of the fuel injection valves as the energization start interval reduces. The electronic control unit is configured to, when the energization start interval is shorter than the peak reaching time, reduce the energization time of the current one of the fuel injection valves is energized as the energization start interval reduces.
    Type: Application
    Filed: June 16, 2014
    Publication date: July 28, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro NAKANO, Eiji MURASE, Rihito KANEKO, Masanao IDOGAWA
  • Publication number: 20160131074
    Abstract: A control device for a fuel injection valve includes a drive circuit that controls open/close operation of the fuel injection valve by passing an exciting current through a solenoid of the fuel injection valve and an ECU that reduces a peak current value as a fuel pressure in a delivery pipe at timing of a start of energization of the fuel injection valve decreases. The ECU reduces the peak current value as an amount of fuel discharged from a high-pressure fuel pump to the delivery pipe reduces.
    Type: Application
    Filed: May 23, 2014
    Publication date: May 12, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro NAKANO, Eiji MURASE, Rihito KANEKO
  • Publication number: 20160108847
    Abstract: An electronic control unit that calculates an injection standby period, which is a period from an energization start point of the solenoid to a point at which the fuel injection valve opens, and adjusts an energization period of the solenoid in accordance with the calculated injection standby period. The electronic control unit of the control apparatus for a fuel injection valve then measures a reference fall detection period, which is a period from the energization start point to a reference fall detection point, and sets the injection standby period to be longer as the reference fall detection period is longer. Here, the reference fall detection point is a point at which the excitation current detected by the current detection circuit falls below a reference current value, which is smaller than a peak current value, while the excitation current decreases after reaching the peak current value.
    Type: Application
    Filed: May 7, 2014
    Publication date: April 21, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro NAKANO, Eiji MURASE, Rihito KANEKO
  • Publication number: 20150377172
    Abstract: A fuel injection system for an engine, the fuel injection system includes injectors and an electronic control unit. The injectors include needle valves; and the ECU is configured to: (i) execute partial lift injection and full lift injection with the injectors, the partial lift injection being injection during which the needle valve does not reach a fully-open state and the full lift injection being injection during which the needle valve reaches the fully-open state; (ii) operate the engine in a partial lift injection region where the injection of a required injection amount of a fuel is shared by the partial lift injection and the full lift injection; and (iii) perform the amount of correction of the required injection amount with respect to the injection amount shared by the full lift injection when the required injection amount is corrected while the engine is operated in the partial lift injection region.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 31, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiko HIGUCHI, Tomohiro NAKANO, Rihito KANEKO, Eiji MURASE
  • Publication number: 20130174811
    Abstract: A temperature reduction control for reducing the temperature of an injector is performed through first to third fuel supply control routines executed by an electronic control device. When the temperature of the injector is reduced by the execution of the temperature reduction control, heat transfer to the vicinity of the nozzle of the injector is reduced. Since the vicinity of the nozzle of the injector is less likely to be placed in a high-temperature environment by in accordance with reduction in heat transfer to the vicinity of the nozzle of the injector, the formation of deposit around the nozzle of the injector is suppressed.
    Type: Application
    Filed: April 20, 2011
    Publication date: July 11, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Taichi Nishimura, Rihito Kaneko
  • Patent number: 8447493
    Abstract: The apparatus of the present invention corrects a control target value of ignition timing using a multipoint learned value AGdp(n) for compensating for a change amount of the ignition timing caused by time-dependent change of the engine and a basic learned value AG(i) for compensating for a change amount of the ignition timing caused by a factor other than the aforementioned time-dependent change of the engine. In a multipoint learning range n in which the time-dependent change of the engine influences the ignition timing to a great extent, the control target is corrected using the multipoint learned value AGdp(n) and the basic learned value AG(i). In ranges other than the multipoint learning range n, the control target is corrected using only the basic learned value AG(i).
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 21, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akito Onishi, Takashi Yoshida, Jun Aoki, Tomohiro Kisaku, Hiroto Tanaka, Rihito Kaneko, Kenji Senda
  • Patent number: 8302462
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8301360
    Abstract: An output signal of a knock sensor is filtered with a plurality of band-pass filters to extract vibration waveform components of a plurality of frequency bands (f1-f4). Weighting coefficients (G1-G4) which multiply the vibration waveform component of each frequency band are established in such a manner as to be a small value as a noise intensity of each frequency band becomes larger. Thereby, the vibration waveform component of a plurality of frequency bands is synthesized by weighting according to an influence of a noise intensity of each frequency band. Even when the noise is superimposed on the vibration waveform component of any of the frequency bands, it becomes possible to reduce the influence of the noise and to synthesize the vibration waveform component of each frequency band, and an accurate knock determination can be performed based on the composite vibration waveform.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: October 30, 2012
    Assignees: Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Masuda, Rihito Kaneko, Satoshi Watanabe, Hiroto Tanaka, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako
  • Patent number: 8205489
    Abstract: An engine ECU executes a program including: detecting a magnitude of vibration of an engine; detecting a vibration waveform of the engine based on the magnitude; calculating a correlation coefficient, in the case where the engine speed is smaller than a threshold value, using the sum of values each determined by subtracting a positive reference value from a magnitude of a knock waveform model, as an area of the knock waveform model and, calculating the correlation coefficient, in the case where the engine speed is not smaller than the threshold value, using the area of the whole knock waveform model; and determining whether or not knocking has occurred using the correlation coefficient. The correlation coefficient is calculated by dividing by the area the sum of differences that are each the difference between the magnitude on the vibration waveform and the magnitude on the knock waveform model.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8145411
    Abstract: An engine ECU executes a program including the steps of: calculating a knock magnitude N by dividing an integrated value lpkknk obtained by integrating the magnitude of vibration in the knock detection gate by BGL; controlling ignition timing according to a result of comparison between knock magnitude N and a determination value VJ; stopping updating of a standard deviation ? when it is determined that determination value VJ to be compared with knock magnitude N is to be changed; updating a median value VM by increasing an update amount of median value VM; and updating BGL according to median value VM and standard deviation ?.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: March 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Watanabe, Hiroto Tanaka, Rihito Kaneko, Norihito Hanai, Kenji Senda, Satoshi Masuda
  • Patent number: 8042381
    Abstract: A knocking judgement method for an internal combustion engine, in which an engine ECU executes a program judging whether or not such ones of integrated values calculated by integrating the output of a knock sensor at every five degrees of a crank angle are larger than a tentative knock judgement value, in vibrations of a fourth frequency band containing the resonance frequency of the engine, tentatively judging that a knocking has occurred, in case the integrated value larger than the tentative knock judgement value is a predetermined number or more, and judging that no knocking has occurred, in case the integrated value larger than the tentative knock judgement value is not more than the predetermined number.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 25, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20110257872
    Abstract: An output signal of a knock sensor is filtered with a plurality of band-pass filters to extract vibration waveform components of a plurality of frequency bands (f1-f4). Weighting coefficients (G1-G4) which multiply the vibration waveform component of each frequency band are established in such a manner as to be a small value as a noise intensity of each frequency band becomes larger. Thereby, the vibration waveform component of a plurality of frequency bands is synthesized by weighting according to an influence of a noise intensity of each frequency band. Even when the noise is superimposed on the vibration waveform component of any of the frequency bands, it becomes possible to reduce the influence of the noise and to synthesize the vibration waveform component of each frequency band, and an accurate knock determination can be performed based on the composite vibration waveform.
    Type: Application
    Filed: July 23, 2008
    Publication date: October 20, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Satoshi Masuda, Rihito Kaneko, Satoshi Watanabe, Hiroto Tanaka, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako
  • Publication number: 20110257865
    Abstract: The apparatus of the present invention corrects a control target value of ignition timing using a multipoint learned value AGdp(n) for compensating for a change amount of the ignition timing caused by time-dependent change of the engine and a basic learned value AG(i) for compensating for a change amount of the ignition timing caused by a factor other than the aforementioned time-dependent change of the engine. In a multipoint learning range n in which the time-dependent change of the engine influences the ignition timing to a great extent, the control target is corrected using the multipoint learned value AGdp(n) and the basic learned value AG(i). In ranges other than the multipoint learning range n, the control target is corrected using only the basic learned value AG(i).
    Type: Application
    Filed: November 20, 2009
    Publication date: October 20, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akito Onishi, Takashi Yoshida, Jun Aoki, Tomohiro Kisaku, Hiroto Tanaka, Rihito Kaneko, Kenji Senda
  • Patent number: 8020429
    Abstract: An engine ECU executes a program including calculating a correlation coefficient by dividing the sum of respective absolute values, which are each a difference between a magnitude in an engine vibration waveform and a magnitude in a knock waveform model for every crank angle, by an area corresponding to magnitudes equal to or larger than a positive reference value in the knock waveform model, and determining whether or not knocking has occurred based on the correlation coefficient.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 20, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuuichi Takemura, Shuhei Oe
  • Patent number: 8005607
    Abstract: An engine ECU executes a program that includes: calculating a median value and a standard deviation based on a calculated value based on the detected vibration of the engine; and subtracting a product of the standard deviation and a coefficient from the median value to calculate a magnitude of mechanical vibration specific to the engine. Knocking determination is carried out by comparing a knock magnitude calculated by dividing the magnitude value of the peak magnitude of the detected vibration of the engine by the magnitude of mechanical vibration specific to the engine with a predetermined determination value. Based on the knocking determination result, ignition timing of the engine is controlled.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 23, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 8000884
    Abstract: A device and associated method for controlling ignition timing of an internal combustion engine are provided. By comparing a determination value and knock magnitude, determination of knocking is made, and ignition timing is advanced or retarded. The device includes an operation unit that sets a correction amount of the determination value to a value corresponding to a degree of change of the determination value over time. The operation unit calculates, at a first timing, a first value related to an average value of the determination values; and calculates, at a second timing later than the first timing, a second value related to the average value of the determination values. The degree of change of the determination value is calculated as a difference between the first value and the second value.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 16, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Koji Aso, Kenji Kasashima, Rihito Kaneko, Masatomo Yoshihara, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Publication number: 20110146384
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Application
    Filed: July 28, 2008
    Publication date: June 23, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 7963269
    Abstract: A 90° integrated value calculating unit of an engine ECU calculates a 90° integrated value obtained by integrating a magnitude. A calculating unit calculates a knock magnitude by dividing 90° integrated value by a BGL. A value obtained by subtracting a standard deviation ? from a median value of 90° integrated value is determined as the BGL. An ignition timing control unit controls the ignition timing depending on whether knock magnitude is equal to or larger than a determination value. A median value calculating unit calculates median value of 90° integrated value. A standard deviation calculating unit calculates standard deviation of 90° integrated value. A first stop unit stops updating of median value and standard deviation when 90° integrated value is smaller than a first threshold value or is equal to or larger than a second threshold value.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: June 21, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Hiroto Tanaka, Satoshi Watanabe, Norihito Hanai, Yasuhiro Yamasako, Kenji Senda, Satoshi Masuda
  • Patent number: 7942040
    Abstract: Out of synthesized waveforms of vibrations in a first frequency band A to a third frequency band C, a knock magnitude N is calculated by using a portion ? having an integrated value greater than a reference magnitude in a knock region but not using a portion having an integrated value greater than the reference magnitude out of the knock region (i.e., a region obtained by excluding the knock region from a knock detecting gate). In a case where knock magnitude N is greater than a determination value V(KX), it is determined that knocking occurs. In contrast, in a case where knock magnitude N is not greater than determination value V(KX), it is determined that no knocking occurs.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: May 17, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe