Patents by Inventor Riley Reese

Riley Reese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10843403
    Abstract: The present disclosure provides methods for printing at least a portion of a three-dimensional (3D) object, comprising receiving, in computer memory, a model of the 3D object. Next, at least one filament material from a source of the at least one filament material may be directed towards a substrate that is configured to support the 3D object, thereby depositing a first layer corresponding to a portion of the 3D object adjacent to the substrate. A second layer corresponding to at least a portion of the 3D object may be deposited. The first and second layer may be deposited in accordance with the model of the 3D object. At least a first energy beam from at least one energy source may be used to selectively melt at least a portion of the first layer and/or the second layer, thereby forming at least a portion of the 3D object.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 24, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Publication number: 20200361122
    Abstract: A preform-charge fixture creates a preform charge, which is a partially consolidated assemblage of preforms that can be efficiently transferred to a mold to create a finished part in a molding process, such as compression molding. In the illustrative embodiment, the preform-charge fixture includes peripheral cleats that are movable towards a central cleat to create a small gap therebetween that receives and constrains preforms in a desired position. The fixture also includes clamps, which are operable to engage an uppermost layer of preforms in the gap and apply a slight amount of downward pressure thereto to assure that the preforms are properly seated. The fixture also accommodates an energy source that heats the preforms so that, in conjunction with downforce applied by the clamps and/or gravity, the preforms can be tacked together, forming the preform charge.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Inventors: Todd PELMAN, Kameron BUTLER, Adam HANSEL, Erick DAVIDSON, Riley REESE, Ethan ESCOWITZ, Cory BLOOME, Alexander DARROW, Ryan SATCHER, J. Scott PERKINS
  • Publication number: 20200338788
    Abstract: A preformer capable of simultaneously forming plural preforms includes a forming surface and source of heat. The forming surface includes guides to keep fiber bundles, the nascent form of the preforms, spaced apart and to maintain their cross-sectional dimension. In some embodiments, the preformer further includes a source of energy, and in some embodiments, the preformer includes a source of energy and a cooling source. A method for forming preforms is also disclosed.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 29, 2020
    Inventors: Ethan ESCOWITZ, J. Scott PERKINS, Erick DAVIDSON, Riley REESE, Cory BLOOME
  • Patent number: 10800115
    Abstract: A method for designing fiber-composite parts in which part performance and manufacturing efficiency can be traded-off against one another to provide an “optimized” design for a desired use case. In some embodiments, the method involves generating an idealized fiber map, wherein the orientation of fibers throughout the prospective part align with the anticipated load conditions throughout the part, and then modifying the idealized fiber map by various fabrication constraints to generate a process-compensated preform map.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: October 13, 2020
    Assignee: Arris Composites Inc.
    Inventors: Ethan Escowitz, J. Scott Perkins, Riley Reese, Erick Davidson, Sean Hennessee
  • Patent number: 10800095
    Abstract: The present disclosure provides methods for printing at least a portion of a three-dimensional (3D) object, comprising receiving, in computer memory, a model of the 3D object. Next, at least one filament material from a source of the at least one filament material may be directed towards a substrate that is configured to support the 3D object, thereby depositing a first layer corresponding to a portion of the 3D object adjacent to the substrate. A second layer corresponding to at least a portion of the 3D object may be deposited. The first and second layer may be deposited in accordance with the model of the 3D object. At least a first energy beam from at least one energy source may be used to selectively melt at least a portion of the first layer and/or the second layer, thereby forming at least a portion of the 3D object.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 13, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Patent number: 10782673
    Abstract: A system and method for additive manufacturing of otherwise thermosetting polymers, such as PAI, is disclosed. The system includes fast-curing hardware that facilitates curing each deposited layer before a successive layer is deposited. This reduces the time to provide a finished part from weeks to hours.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: September 22, 2020
    Assignee: Arevo, Inc.
    Inventors: Hemant Bheda, Riley Reese
  • Publication number: 20200269527
    Abstract: A method for forming a composite part involves forming a layup comprising (a) preforms/flat form-factor feedstock, either of which includes a plurality of fibers and a matrix precursor, and (b) a differential-melt polymer. The matrix precursor and the differential-melt polymer differ as to at least one of thermal properties and rheological properties. The layup is subjected to controlled application of heat and pressure to melt the matrix precursor and differential-melt polymer. The polymers are then cooled to form a composite part that displays properties attributable to all the constituents. As a function of a variety of factors, the resulting part can be homogenous or heterogenous, and the properties can be localized or global throughout the part.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 27, 2020
    Inventors: Ethan ESCOWITZ, J. Scott PERKINS, Erick DAVIDSON, Riley REESE, Andrew MATHEWS
  • Publication number: 20200247057
    Abstract: The present invention relates to a system and a method for optimizing printing parameters, such as slicing parameters and tool path instructions, for additive manufacturing. The present invention comprises a property analysis module that predicts and analyses properties of a filament object model, representing a constructed 3D object. The filament object model is generated based on the tool path instructions and user specified object properties. Analysis includes comparing the predicted filament object model properties with the user specified property requirements; and further modifying the printing parameters in order to meet the user specified property requirements.
    Type: Application
    Filed: December 20, 2019
    Publication date: August 6, 2020
    Inventors: Hemant BHEDA, Wiener MONDESIR, Riley REESE, Shekar MANTHA
  • Patent number: 10703042
    Abstract: A method and apparatus for additive manufacturing wherein a fiber composite filament having an arbitrarily shaped cross section is softened and then flattened to tape-like form factor for incorporation into a part that is being additively manufactured.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 7, 2020
    Assignee: Arevo, Inc.
    Inventors: Armando Armijo, Hemant Bheda, Chandrashekar Mantha, Wiener Mondesir, Sohil Nandu, Riley Reese
  • Publication number: 20200139694
    Abstract: The present disclosure provides methods for additive manufacturing of a three-dimensional (3D) object, comprising preheating a feed comprising a polymer material to a temperature in excess of a glass transition temperature and below a melting point of the polymer material. The preheating may occur at a first location in an additive manufacturing apparatus. Next, the polymer material may be melted at a second location that is spatially distinct from the first location.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 7, 2020
    Inventors: Armando ARMIJO, Riley REESE
  • Publication number: 20200130297
    Abstract: A method for designing fiber-composite parts in which part performance and manufacturing efficiency can be traded-off against one another to provide an “optimized” design for a desired use case. In some embodiments, the method involves generating an idealized fiber map, wherein the orientation of fibers throughout the prospective part align with the anticipated load conditions throughout the part, and then modifying the idealized fiber map by various fabrication constraints to generate a process-compensated preform map.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 30, 2020
    Inventors: Ethan ESCOWITZ, J. Scott PERKINS, Riley REESE, Erick DAVIDSON, Sean HENNESSEE
  • Publication number: 20200122358
    Abstract: An ultrasonic manipulator for processing three-dimensional composite preforms is provided, including at least one end effector, the end effector having an ultrasonic cutting device, an ultrasonic machining device, an ultrasonic inspecting device, and an ultrasonic bonding device. A method for creating three-dimensional preforms for use in molding composite parts is also provided, and includes the steps of grasping a preform/towpreg, inspecting the composite object using ultrasound, cutting a preform from the composite object using ultrasound, and at least some of the steps of shaping the preform using ultrasound, machining the preform using ultrasound, assembling a plurality of preforms, bonding the assembled preforms together to create a preform charge, and placing the preform charge in an injection mold.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 23, 2020
    Inventors: Riley REESE, Ethan ESCOWITZ, Erick DAVIDSON, J. Scott PERKINS
  • Publication number: 20200114596
    Abstract: A preform charge is formed by forming an assemblage of preforms, wherein preforms in the assemblage are bonded to a neighboring preform such that the preform charge effectively becomes a single unit. The preform charge can then be added to a mold to fabricate a part via compression molding.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 16, 2020
    Inventors: Erick DAVIDSON, Ethan ESCOWITZ, Riley REESE, Sean HENNESSEE, J. Scott PERKINS
  • Publication number: 20200114544
    Abstract: An apparatus and method for manufacturing fiber composite parts from a raw fiber tow to a finished composite part in a single continuous process are provided. The apparatus includes a continuous tow, a preheater/spreader to receive and spread the tow, an injection molding die downstream from the preheater/spreader to form an extrudate filament, a cooler downstream from the injection molding die, a forming die downstream from the cooler to pultrude and shape the cross-section of the extrudate filament, a preformer downstream from the forming die to heat and cut the extrudate filament to create preforms, a compression mold downstream from the preformer to form a finished fiber composite part, and a pick-and-place system to continuously pick each preform from the preformer and place each preform into the compression mold.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Inventors: Riley REESE, Ethan ESCOWITZ, Erick DAVIDSON
  • Publication number: 20200114591
    Abstract: Rib-and-sheet structures include a rib comprising continuous, aligned fibers. The rib is fabricated via compression molding from continuous, aligned fiber, thereby providing an aligned, continuously reinforced rib. In one embodiment, rib-and-sheet structures are produced in a two-step compression-molding process, wherein a near net-shape rib is molded, in a first mold, from fiber-bundle based preforms, and then a rib-and-sheet part is molded by placing, in a second mold, the rib with either: (i) a preformed sheet, (ii) plies that form a laminate/sheet or (iii) chopped fibers that form a sheet during the molding process. In another embodiment, rib-and-sheet structures are fabricated in a one-step compression-molding process, wherein fiber-bundle-based preforms and (i) a preformed sheet, (ii) plies that form a laminate/sheet, or (iii) chopped fibers are combined in a single mold and molded in a single step.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Inventors: Riley REESE, Erick DAVIDSON, Ethan ESCOWITZ, J. Scott PERKINS
  • Publication number: 20200114545
    Abstract: A method of reprocessing a fiber composite part to form a preform is provided including determining a location having a longest stretch of continuous, unidirectional fibers in the part, determining an axis generally closest to and parallel to the fibers at the location, suspending the part from an anchor point within a heated cavity, heating the part to a temperature above a glass transition temperature and below a melting temperature of the resin of the part, and applying at least one force vector to the composite part, the sum of such vectors being parallel to the axis, wherein fibers of the part realign in a direction generally parallel to the sum of the force vectors, and wherein the composite part yields in the direction of the at least one applied force vector to provide a preform.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Inventors: Riley REESE, Ethan ESCOWITZ, Erick DAVIDSON, J. Scott PERKINS
  • Publication number: 20200108529
    Abstract: An apparatus for molding a part includes a plunger cavity, a plunger, and a mold cavity, wherein the plunger is oriented out-of-plane with respect to a major surface of the mold cavity, and first and second vents couples to respective first and second portions of the mold cavity. In a method, resin and fiber are forced into the mold cavity from a plunger cavity, and at least some of the fibers and resin are preferentially flowed to certain region in the mold cavity via the use of vents.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 9, 2020
    Inventors: Erick DAVIDSON, Ethan ESCOWITZ, Sean HENNESSEE, Riley Reese
  • Publication number: 20200108568
    Abstract: An apparatus for molding a part includes a plunger cavity, a plunger, and a mold cavity, wherein the plunger is oriented out-of-plane with respect to a major surface of the mold cavity, and first and second vents couples to respective first and second portions of the mold cavity. In a method, resin and fiber are forced into the mold cavity from a plunger cavity, and at least some of the fibers and resin are preferentially flowed to certain region in the mold cavity via the use of vents.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 9, 2020
    Inventors: Erick DAVIDSON, Ethan ESCOWITZ, Sean HENNESSEE, Riley Reese
  • Patent number: 10556382
    Abstract: The present invention relates to a system and a method for optimizing printing parameters, such as slicing parameters and tool path instructions, for additive manufacturing. The present invention comprises a property analysis module that predicts and analyses properties of a filament object model, representing a constructed 3D object. The filament object model is generated based on the tool path instructions and user specified object properties. Analysis includes comparing the predicted filament object model properties with the user specified property requirements; and further modifying the printing parameters in order to meet the user specified property requirements.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: February 11, 2020
    Assignee: Arevo, Inc.
    Inventors: Hemant Bheda, Wiener Mondesir, Riley Reese, Shekar Mantha
  • Publication number: 20200016883
    Abstract: The present invention provides a system and a method for real time monitoring and identifying defects occurring in a three dimensional object build via an additive manufacturing process. Further, the present invention provides in-situ correction of such defects by a plurality of functional tool heads possessing freedom of motion in arbitrary planes and approach, where the functional tool heads are automatically and independently controlled based on a feedback analysis from the printing process, implementing analyzing techniques. Furthermore, the present invention provides a mechanism for analyzing defected data collected from detection devices and correcting tool path instructions and object model in-situ during construction of a 3D object. A build report is also generated that displays, in 3D space, the structural geometry and inherent properties of a final build object along with the features of corrected and uncorrected defects.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 16, 2020
    Inventors: Riley Reese, Hemant Bheda, Wiener Mondesir