Patents by Inventor Rishabh Mehandru

Rishabh Mehandru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240006317
    Abstract: Structures having vertical keeper or power gate for backside power delivery are described. In an example, an integrated circuit structure includes a front-side structure including a device layer having a plurality of fin-based transistors, and a plurality of metallization layers above the fin-based transistors of the device layer. A backside structure is below the fin-based transistors of the device layer. The backside structure includes a ground metal line. One or more vertical gate all-around transistors is between the fin-based transistors of the device layer and the ground metal line of the backside structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Tahir GHANI, Anand S. MURTHY, Cory WEBER, Rishabh MEHANDRU, Wilfred GOMES, Sagar SUTHRAM
  • Publication number: 20240008255
    Abstract: Memory arrays with backside components and angled transistors, and related assemblies and methods, are disclosed herein. A transistor is referred to as an “angled transistor” if a longitudinal axis of an elongated semiconductor structure of the transistor (e.g., a fin or a nanoribbon) is neither perpendicular nor parallel to any edges of front or back sides of a support structure (e.g., a die) over which the transistor is implemented. A component is referred to as a “backside component” if it is provided on the side of a semiconductor substrate that is opposite to the side over which the transistors of the memory arrays are provided. Memory arrays with backside components and angled transistors provide a promising way to increasing densities of memory cells on the limited real estate of semiconductor chips and/or decreasing adverse effects associated with continuous scaling of IC components.
    Type: Application
    Filed: May 30, 2023
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Sagar Suthram, Tahir Ghani, Anand S. Murthy, Cory E. Weber, Rishabh Mehandru, Wilfred Gomes, Pushkar Sharad Ranade
  • Publication number: 20240006531
    Abstract: Structures having vertical transistors are described. In an example, an integrated circuit structure includes a channel structure on a drain contact layer, the channel structure having an opening extending there through. A gate dielectric layer is on a bottom and along sides of the opening, the gate dielectric layer laterally surrounded by the channel structure. A gate electrode is on and laterally surrounded by the gate dielectric layer. A source contact layer is on sides of a portion of the gate dielectric layer extending above the channel structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Rishabh MEHANDRU, Sagar SUTHRAM, Cory WEBER, Tahir GHANI, Anand S. MURTHY, Pushkar RANADE, Wilfred GOMES
  • Publication number: 20240006412
    Abstract: Structures having recessed channel transistors are described. In an example, an integrated circuit structure includes a channel structure having a recess extending partially there through. A gate dielectric layer is on a bottom and along sides of the recess, the gate dielectric layer laterally surrounded by the channel structure. A gate electrode is on and laterally surrounded by the gate dielectric layer. The gate electrode has an uppermost surface below and uppermost surface of the channel structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Tahir GHANI, Anand S. MURTHY, Rishabh MEHANDRU, Cory WEBER, Sagar SUTHRAM, Pushkar RANADE, Wilfred GOMES
  • Publication number: 20240006416
    Abstract: Structures having ultra-high conductivity global routing are described. In an example, an integrated circuit structure includes a device layer having a plurality of transistors. A plurality of metallization layers is above the plurality of transistors of the device layer. One or more of the metal layers includes a material having a critical temperature greater than 10 Kelvin and less than 300 Kelvin.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Tahir GHANI, Anand S. MURTHY, Sagar SUTHRAM, Pushkar RANADE, Wilfred GOMES, Rishabh MEHANDRU, Cory WEBER
  • Patent number: 11862702
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Cory Weber, Willy Rachmady, Varun Mishra
  • Publication number: 20230422485
    Abstract: Structures having memory with backside DRAM and power delivery are described. In an example, an integrated circuit structure includes a front-side structure including a device layer having a plurality of nanowire-based transistors, and a plurality of metallization layers above the nanowire-based transistors of the device layer. A backside structure is below the nanowire-based transistors of the device layer. The backside structure includes a plurality of dynamic random access memory (DRAM) devices.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Abhishek Anil SHARMA, Sagar SUTHRAM, Wilfred GOMES, Tahir GHANI, Rishabh MEHANDRU, Cory WEBER, Anand S. MURTHY
  • Publication number: 20230422496
    Abstract: IC devices with logic circuits using vertical transistors with backside source or drain (S/D) regions, and related assemblies and methods, are disclosed herein. An example vertical transistor includes an elongated structure (e.g., a nanoribbon) of one or more semiconductor materials extending between a first side (e.g., a back side) and an opposing second side (e.g., a front side) of a substrate. The first S/D region of the transistor may be provided at the first side of the substrate, while the second S/D region of the transistor may be provided at the second side, with the channel region of the transistor being the portion of the elongated structure between the first and second S/D regions. Implementing various logic circuits using vertical transistors with backside S/D regions may provide a promising way to increasing densities of transistors on the limited real estate of semiconductor chips and/or decreasing short-channel effects associated with continuous scaling of IC components.
    Type: Application
    Filed: May 10, 2023
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Sagar Suthram, Tahir Ghani, Anand S. Murthy, Wilfred Gomes, Pushkar Sharad Ranade, Abhishek A. Sharma, Rishabh Mehandru
  • Patent number: 11854894
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Valluri R. Rao, Patrick Morrow, Rishabh Mehandru, Doug Ingerly, Kimin Jun, Kevin O'Brien, Paul Fischer, Szuya S. Liao, Bruce Block
  • Patent number: 11843052
    Abstract: A semiconductor device includes a semiconductor body that includes a surface and a first region and a second region formed in the semiconductor body, where a channel region is located between the first region and the second region, and where the second region includes a sub-region that includes a blanket dopant; a first conductive contact on the surface of the semiconductor body above the first region; a semiconductor-on-insulator (SOI) at a bottom of the first region; and a pocket channel dopant (PCD) formed in the channel, where a first portion of the PCD is adjacent to a first portion of the SOI; and a second conductive contact on a bottom portion of the sub-region, where a first portion of the second conductive contact is adjacent to a second portion of the SOI, and a second portion of the second conductive contact is adjacent to a second portion of the PCD.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: December 12, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Tahir Ghani, Stephen Cea
  • Patent number: 11824107
    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Tahir Ghani, Stephen Cea, Biswajeet Guha
  • Patent number: 11824097
    Abstract: Solid assemblies having a composite dielectric spacer and processes for fabricating the solid assemblies are provided. The composite dielectric spacer can include, in some embodiments, a first dielectric layer and a second dielectric layer having a mutual interface. The composite dielectric spacer can separate a contact member from a conductive interconnect member, thus reducing the capacitance between such members with respect to solid assemblies that include one of first dielectric layer or the second dielectric layer. The composite dielectric spacer can permit maintaining the real estate of an interface between the conductive interconnect and a trench contact member that has an interface with a carrier-doped epitaxial layer embodying or constituting a source contact region or a drain contact region of a field effect transistor. The trench contact member can form another interface with the conductive interconnect member, providing a satisfactory contact resistance therebetween.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Pratik A. Patel, Ralph T. Troeger, Szuya S. Liao
  • Publication number: 20230352481
    Abstract: Stacked transistor structures having a conductive interconnect between source/drain regions of upper and lower transistors. In some embodiments, the interconnect is provided, at least in part, by highly doped epitaxial material deposited in the upper transistor’s source/drain region. In such cases, the epitaxial material seeds off of an exposed portion of semiconductor material of or adjacent to the upper transistor’s channel region and extends downward into a recess that exposes the lower transistor’s source/drain contact structure. The epitaxial source/drain material directly contacts the lower transistor’s source/drain contact structure, to provide the interconnect. In other embodiments, the epitaxial material still seeds off the exposed semiconductor material of or proximate to the channel region and extends downward into the recess, but need not contact the lower contact structure.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Aaron D. LILAK, Gilbert DEWEY, Cheng-Ying HUANG, Christopher JEZEWSKI, Ehren MANNEBACH, Rishabh MEHANDRU, Patrick MORROW, Anand S. MURTHY, Anh PHAN, Willy RACHMADY
  • Patent number: 11798838
    Abstract: Embodiments herein describe techniques for a semiconductor device including a carrier wafer, and an integrated circuit (IC) formed on a device wafer bonded to the carrier wafer. The IC includes a front end layer having one or more transistors at front end of the device wafer, and a back end layer having a metal interconnect coupled to the one or more transistors. One or more gaps may be formed by removing components of the one or more transistors. Furthermore, the IC includes a capping layer at backside of the device wafer next to the front end layer of the device wafer, filling at least partially the one or more gaps of the front end layer. Moreover, the IC includes one or more air gaps formed within the one or more gaps, and between the capping layer and the back end layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Rishabh Mehandru, Hui Jae Yoo, Patrick Morrow, Kevin Lin
  • Patent number: 11798991
    Abstract: A device is disclosed. The device includes a channel, a first source-drain region adjacent a first portion of the channel, the first source-drain region including a first crystalline portion that includes a first region of metastable dopants, a second source-drain region adjacent a second portion of the channel, the second source-drain region including a second crystalline portion that includes a second region of metastable dopants. A gate conductor is on the channel.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Rishabh Mehandru, Willy Rachmady, Harold Kennel, Tahir Ghani
  • Publication number: 20230317786
    Abstract: Gate-all-around integrated circuit structures having necked features, and methods of fabricating gate-all-around integrated circuit structures having necked features, are described. In an example, an integrated circuit structure includes a vertical stack of horizontal nanowires. Each nanowire of the vertical stack of horizontal nanowires has a channel portion with a first vertical thickness and has end portions with a second vertical thickness greater than the first vertical thickness. A gate stack is surrounding the channel portion of each nanowire of the vertical stack of horizontal nanowires.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 5, 2023
    Inventors: Rishabh MEHANDRU, Cory WEBER, Varun MISHRA, Tahir GHANI, Pratik PATEL, Wonil CHUNG, Mohammad HASAN
  • Publication number: 20230317808
    Abstract: Embodiments of the present disclosure include integrated circuit structures having differentiated channel sizing, and methods of fabricating integrated circuit structures having differentiated channel sizing. In an example, a structure includes a memory region having a first vertical stack of horizontal nanowires having a first number of nanowires. The integrated circuit structure also includes a logic region having a second vertical stack of horizontal nanowires spaced apart from the first vertical stack of horizontal nanowires. The second vertical stack of horizontal nanowires has a second number of nanowires less than the first number of nanowires.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 5, 2023
    Inventors: Rishabh MEHANDRU, Cory WEBER, Clifford ONG, Sukru YEMENICIOGLU, Tahir GHANI, Brian GREENE
  • Publication number: 20230317822
    Abstract: Embodiments described herein may be related to transistor structures where dimpled spacers, which may also be referred to as inner spacers or offset spacers, may be formed around gates within an epitaxial structure such that the epitaxial material adjacent to the dimpled spacer is uniform and/or defect free. In embodiments, forming the dimpled spacers occurs after epitaxial growth. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventors: Stephen M. CEA, Borna OBRADOVIC, Rishabh MEHANDRU, Jack T. KAVALIEROS
  • Publication number: 20230275135
    Abstract: An apparatus including a circuit structure including a device stratum including a plurality of devices including a first side and an opposite second side; and a metal interconnect coupled to at least one of the plurality of devices from the second side of the device stratum. A method including forming a transistor device including a channel between a source region and a drain region and a gate electrode on the channel defining a first side of the device; and forming an interconnect to one of the source region and the drain region from a second side of the device.
    Type: Application
    Filed: April 5, 2023
    Publication date: August 31, 2023
    Inventors: Patrick MORROW, Rishabh MEHANDRU, Aaron D. LILAK, Kimin JUN
  • Patent number: 11742346
    Abstract: Stacked transistor structures having a conductive interconnect between source/drain regions of upper and lower transistors. In some embodiments, the interconnect is provided, at least in part, by highly doped epitaxial material deposited in the upper transistor's source/drain region. In such cases, the epitaxial material seeds off of an exposed portion of semiconductor material of or adjacent to the upper transistor's channel region and extends downward into a recess that exposes the lower transistor's source/drain contact structure. The epitaxial source/drain material directly contacts the lower transistor's source/drain contact structure, to provide the interconnect. In other embodiments, the epitaxial material still seeds off the exposed semiconductor material of or proximate to the channel region and extends downward into the recess, but need not contact the lower contact structure.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert Dewey, Cheng-Ying Huang, Christopher Jezewski, Ehren Mannebach, Rishabh Mehandru, Patrick Morrow, Anand S. Murthy, Anh Phan, Willy Rachmady