Patents by Inventor Rishi Mathur

Rishi Mathur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10727861
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 28, 2020
    Assignee: MaxLinear, Inc.
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Patent number: 10615815
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 7, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Publication number: 20190379390
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Publication number: 20190341926
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Publication number: 20140145768
    Abstract: The main feedback loop of a PLL/DLL receives a reference clock and an output clock as inputs, and operates to achieve one or both of a phase and a frequency lock of the output clock with respect to the reference clock. The PLL/DLL includes an RS-latch connected to receive the output clock and the reference clock. The RS-Latch generates a digital output representing a phase difference between the reference clock and the output clock. A correction block in the PLL/DLL receives the digital output and adjusts an electrical characteristic of the main feedback loop by a value that is based on a polarity of the digital output. Effects of offset-errors in the PLL/DLL are thereby minimized or corrected for.
    Type: Application
    Filed: February 8, 2013
    Publication date: May 29, 2014
    Applicant: COSMIC CIRCUITS PVT LTD
    Inventors: Rishi Mathur, Jyoti Arya, Prasenjit Bhowmik
  • Patent number: 8723566
    Abstract: The main feedback loop of a PLL/DLL receives a reference clock and an output clock as inputs, and operates to achieve one or both of a phase and a frequency lock of the output clock with respect to the reference clock. The PLL/DLL includes an RS-latch connected to receive the output clock and the reference clock. The RS-Latch generates a digital output representing a phase difference between the reference clock and the output clock. A correction block in the PLL/DLL receives the digital output and adjusts an electrical characteristic of the main feedback loop by a value that is based on a polarity of the digital output. Effects of offset-errors in the PLL/DLL are thereby minimized or corrected for.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 13, 2014
    Assignee: Cadence AMS Design India Private Limited
    Inventors: Rishi Mathur, Jyoti Arya, Prasenjit Bhowmik
  • Patent number: 8659362
    Abstract: A relaxation oscillator circuit with reduced sensitivity of oscillation frequency to comparator delay variation includes a first current source that generates charging current, a second current source coupled to the first current source to generate reference voltage, a resistor coupled to the second current source to enable generation of the reference voltage, a capacitor coupled to the first current source that is charged based on the charging current, a comparator responsive to voltage corresponding to the capacitor and the reference voltage to generate output voltage, a peak detector coupled to the capacitor to generate peak voltage, an error detector coupled to the peak detector and the second current source to generate an error based on the peak voltage and the reference voltage, and a controller coupled to the error detector to control one of the charging current, offset voltage input to the comparator, and capacitance of the capacitor.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Cadence AMS Design India Private Limited
    Inventors: Prasenjit Bhowmik, Rishi Mathur, Sriram Ganesan, Sunil Rajan
  • Publication number: 20120319789
    Abstract: A relaxation oscillator circuit with reduced sensitivity of oscillation frequency to comparator delay variation includes a first current source that generates charging current, a second current source coupled to the first current source to generate reference voltage, a resistor coupled to the second current source to enable generation of the reference voltage, a capacitor coupled to the first current source that is charged based on the charging current, a comparator responsive to voltage corresponding to the capacitor and the reference voltage to generate output voltage, a peak detector coupled to the capacitor to generate peak voltage, an error detector coupled to the peak detector and the second current source to generate an error based on the peak voltage and the reference voltage, and a controller coupled to the error detector to control one of the charging current, offset voltage input to the comparator, and capacitance of the capacitor.
    Type: Application
    Filed: November 22, 2011
    Publication date: December 20, 2012
    Applicant: Cosmic Circuits Private Limited
    Inventors: Prasenjit Bhowmik, Rishi Mathur, Sriram Ganesan, Sunil Rajan