Patents by Inventor Robert Blazej

Robert Blazej has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190161786
    Abstract: Provided herein are systems and components thereof for improving protease activity. The systems make use of an emulsion for in vitro compartmentalization of a library of synthetic compounds, each compound having a gene linked to a protease substrate and selectable marker. Expressed enzymes with greater protease activity will preferentially hydrolyze the protease substrate, whereas enzymes with less protease activity will leave the substrate intact. Removal of the non-hydrolyzed compounds provides an enriched gene library encoding for more active protease variants. Also described are synthetic compounds and emulsions which can be used in the methods.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 30, 2019
    Applicant: NOVOZYMES A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich
  • Publication number: 20180355404
    Abstract: Provided herein are methods and means for enhancing lipase activity. The system makes use of an emulsion for in vitro compartmentalization of a library of synthetic compounds which have a polynucleotide linked to a lipase substrate (e.g., a triglyceride). Expressed polypeptides having greater lipase activity will preferentially hydrolyze the substrate from the linked polynucleotide. Genes encoding polypeptides having less lipase activity will remain linked to the substrate and may be removed to enrich the library for more active variants. Also described are synthetic compounds and emulsions which can be used in the methods.
    Type: Application
    Filed: April 7, 2016
    Publication date: December 13, 2018
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich, Allan Svendsen, Jesper Brask, Anne Olsen, Kathleen Hirano, Amy Twite
  • Publication number: 20180073017
    Abstract: Provided herein are methods and means for enhancing enzymatic activity. The system makes use of an emulsion for in vitro compartmentalization of a library of synthetic compounds which have a gene and a marked enzymatic substrate both directly linked to a solid phase. Expressed enzymes with greater activity will preferentially release the selectable marker from the solid phase, whereas enzymes with less activity will leave the markers intact. Removal of the marked compounds provides an enriched gene library encoding for more active variants. Also described are synthetic compounds and emulsions which can be used in the methods.
    Type: Application
    Filed: April 7, 2016
    Publication date: March 15, 2018
    Applicant: NOVOZYMES A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich, Allan Svendsen
  • Publication number: 20170369860
    Abstract: The present invention relates to endoglucanase variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, expression vectors, and recombinant host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 28, 2017
    Applicant: Novozymes A/S
    Inventors: Robert Blazej, Charles Emrich, Nicholas Toriello, Hanshu Ding, David Osborn, Aubrey Jones
  • Publication number: 20150218553
    Abstract: The present invention provides methods based on screening expressed polynucleotide libraries for soluble proteins.
    Type: Application
    Filed: September 20, 2013
    Publication date: August 6, 2015
    Applicant: Novozymes A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich
  • Patent number: 9080162
    Abstract: This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 14, 2015
    Assignee: Novozymes, A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich, Richard N. Cohen, Nitzan Koppel
  • Patent number: 8841116
    Abstract: Methods and microfluidic circuitry for inline injection of nucleic acids for capillary electrophoresis analysis are provided. According to various embodiments, microfabricated structures including affinity-based capture matrixes inline with separation channels are provided. The affinity-based capture matrixes provide inline sample plug formation and injection into a capillary electrophoresis channel. Also provided are methods and apparatuses for a microbead-based inline injection system for DNA sequencing.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 23, 2014
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Robert Blazej, Palani Kumaresan
  • Publication number: 20140113335
    Abstract: This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 24, 2014
    Applicant: Novozymes A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich, Richard N. Cohen, Nitzan Koppel
  • Patent number: 8420318
    Abstract: Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 16, 2013
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Robert Blazej, Chung Liu, Palani Kumaresan, Stephanie H. I. Yeung
  • Publication number: 20120142010
    Abstract: Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments.
    Type: Application
    Filed: February 13, 2012
    Publication date: June 7, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Richard A. MATHIES, Robert BLAZEJ, Chung LIU, Palani KUMARESAN, Stephanie H.I. YEUNG
  • Publication number: 20110020920
    Abstract: Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments.
    Type: Application
    Filed: July 27, 2010
    Publication date: January 27, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Richard A. MATHIES, Robert BLAZEJ, Chung LIU, Palani KUMARESAN, Stephanie H. I. YEUNG
  • Patent number: 7799553
    Abstract: Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: September 21, 2010
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Robert Blazej, Chung Liu, Palani Kumaresan, Stephanie H. I. Yeung
  • Publication number: 20100224255
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, William H. Grover, Brian Paegel, Alison Skelley, Eric Lagally, Chung N. Liu, Robert Blazej
  • Publication number: 20090060797
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 5, 2009
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, William H. Grover, Brian Paegel, Alison Skelley, Eric Lagally, Chung N. Liu, Robert Blazej
  • Publication number: 20090035770
    Abstract: Methods and microfluidic circuitry for inline injection of nucleic acids for capillary electrophoresis analysis are provided. According to various embodiments, microfabricated structures including affinity-based capture matrixes inline with separation channels are provided. The affinity-based capture matrixes provide inline sample plug formation and injection into a capillary electrophoresis channel. Also provided are methods and apparatuses for a microbead-based inline injection system for DNA sequencing.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 5, 2009
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, Robert Blazej, Palani Kumaresan
  • Publication number: 20060073484
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of dense arrays of a variety of fluid control structures, such as structures for isolating, routing, merging, splitting, and storing volumes of fluid. The fluid control structures can be used to implement a pathogen detection and analysis system including integrated immunoaffinity capture and analysis, such as polymerase chain reaction (PCR) and capillary electrophoresis (CE) analysis. An analyte solution can be input into the device and pumped through a series of immunoaffinity capture matrices in microfabricated chambers having antibodies targeted to the various classes of microbiological organisms such as bacteria, viruses and bacterial spores. The immunoaffinity chambers can capture, purify, and concentrate the target for further analysis steps.
    Type: Application
    Filed: December 29, 2003
    Publication date: April 6, 2006
    Inventors: Richard Mathies, William Grover, Brian Paegel, Alison Skelley, Chung Liu, Eric Lagally, Robert Blazej
  • Publication number: 20050287572
    Abstract: Methods and apparatus for genome analysis are provided. A microfabricated structure including a microfluidic distribution channel is configured to distribute microreactor elements having copies of a sequencing template into a plurality of microfabricated thermal cycling chambers. A microreactor element may include a microcarrier element carrying the multiple copies of the sequencing template. The microcarrier element may comprise a microsphere. An autovalve at an exit port of a thermal cycling chamber, an optical scanner, or a timing arrangement may be used to ensure that only one microsphere will flow into one thermal cycling chamber wherein thermal cycling extension fragments are produced. The extension products are captured, purified, and concentrated in an integrated oligonucleotide gel capture chamber. A microfabricated component separation apparatus is used to analyze the purified extension fragments.
    Type: Application
    Filed: May 25, 2005
    Publication date: December 29, 2005
    Applicant: The Regents of the University of California
    Inventors: Richard Mathies, Robert Blazej, Chung Liu, Palani Kumaresan, Stephanie Yeung
  • Publication number: 20040209354
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
    Type: Application
    Filed: December 29, 2003
    Publication date: October 21, 2004
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, William H. Grover, Brian Paegel, Alison Skelley, Eric Lagally, Chung N. Liu, Robert Blazej