Patents by Inventor Robert Bruce van Dover

Robert Bruce van Dover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7135438
    Abstract: A class of superconductive materials containing copper-oxygen bonding and with mixed cation-occupancy designed with a view to size and valence consideration yield useful values of critical temperature and other properties. Uses entail all applications which involves superconducting materials such as magnets and transmission lines which require continuous superconductivity paths as well as detectors (e.g., which may rely on tunneling).
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: November 14, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6716488
    Abstract: A ferrite layer formation process that may be performed at a lower temperature than conventional ferrite formation processes. The formation process may produce highly anisotropic structures. A ferrite layer is deposited on a substrate while the substrate is exposed to a magnetic field. An intermediate layer may be positioned between the substrate and the ferrite to promote bonding of the ferrite to the substrate. The process may be performed at temperatures less than 300° C. Ferrite film anisotropy may be achieved by embodiments of the invention in the range of about 1000 dyn-cm/cm3 to about 2×106 dyn-cm/cm3.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 6, 2004
    Assignee: Agere Systems Inc.
    Inventors: Debra Anne Fleming, Gideon S. Grader, David Wilfred Johnson, Jr., John Thomson, Jr., Robert Bruce Van Dover
  • Publication number: 20030207765
    Abstract: It was discovered that metals useful for cuprate superconductor wires and ribbons, such as Ag, Cu, and Au, are not necessarily desirable for magnesium boride superconductor bodies, since such elements tend to react with Mg and thereby deteriorate the properties of the superconducting MgB2. The invention relates to techniques and materials that provide useful MgB2 superconducting bodies. The invention relates to a method for forming a MgB2 superconducting body, involving providing an intermediate body of a metal cladding; superconducting material or precursor material for superconducting material; and, optionally, a diffusion barrier (depending on the type of metal cladding); performing a cross-section reducing operation on the intermediate body, to provide an elongate body; and performing a heat treatment of the elongate body, to obtain desired properties from the superconducting material (and to also form the superconducting MgB2 material when precursor material is used).
    Type: Application
    Filed: August 2, 2001
    Publication date: November 6, 2003
    Inventors: Christopher A. Bower, Sungho Jin, Hareesh Mavoori, Robert Bruce Van Dover
  • Patent number: 6638894
    Abstract: A class of superconductive materials containing copper-oxygen bonding and with mixed cation-occupancy designed with a view to size and valence consideration yield useful values of critical temperature and other properties. Uses entail all applications which involves superconducting materials such as magnets and transmission lines which require continuous superconductivity paths as well as detectors (e.g., which may rely on tunneling).
    Type: Grant
    Filed: March 10, 1987
    Date of Patent: October 28, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6635603
    Abstract: A class of superconductive materials containing copper-oxygen bonding and with mixed cation-occupancy designed with a view to size and valence consideration yield useful values of critical temperature and other properties. Uses entail all applications which involves superconducting materials such as magnets and transmission lines which require continuous superconductivity paths as well as detectors (e.g., which may rely on tunneling).
    Type: Grant
    Filed: March 3, 1987
    Date of Patent: October 21, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6630425
    Abstract: Superconducting copper oxides of the perovskite structure are modified to have mixed occupancy of a cation site, thereby resulting in increased limits in critical field and/or critical current. Mixed occupancy may be observed in terms of increased resistivity as the superconducting material reverts to a nonsuperconducting state. A significant advantage, at least for preferred compositions, derives from the fact that critical temperature is unaffected relative to the prototypical material.
    Type: Grant
    Filed: March 18, 1987
    Date of Patent: October 7, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6590241
    Abstract: The specification describes silicon MOS devices with gate dielectrics having the composition Ta1−xAlxOy, where x is 0.03-0.7 and y is 1.5-3, Ta1−xSixOy, where x is 0.05-0.15, and y is 1.5-3, and Ta1−x−zAlxSizOy, where 0.7>x+z>0.05, z<0.15 and y is 1.5-3. By comparison with the standard SiO2 gate dielectric material, these materials provide improved dielectric properties and also remain essentially amorphous to high temperatures. This retards formation of SiO2 interfacial layers which otherwise dominate the gate dielectric properties and reduce the overall effectiveness of using a high dielectric material.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: July 8, 2003
    Assignee: Agere Systems Inc.
    Inventors: Glen B. Alers, Robert McLemore Fleming, Lynn Frances Schneemeyer, Robert Bruce Van Dover
  • Patent number: 6573818
    Abstract: The present invention is a planar spiral inductor a top magnetic layer a bottom magnetic layer; and a plurality of conductive coils disposed between said top magnetic layer and said bottom magnetic layer. A significant difference from prior art is that the top and bottom magnetic layers have their centers effectively cut out using lithographic techniques or other techniques to frame the core of the conductive spirals. An advantage of this structure over the prior art is that when magnetic anisotropies other than shape are kept small, then the magnetic configuration will produce a magnetostatic shape anisotropy such that the easy axis (low energy direction of magnetization) lies parallel to the legs of a rectangular frame or the circumference of a circular frame, as will be described.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: June 3, 2003
    Assignee: Agere Systems, Inc.
    Inventors: Timothy J. Klemmer, Robert Bruce Van Dover, Kenneth Alexander Ellis, Ashraf Wagih Lotfi
  • Publication number: 20030003324
    Abstract: A ferrite layer formation process that may be performed at a lower temperature than conventional ferrite formation processes. The formation process may produce highly anisotropic structures. A ferrite layer is deposited on a substrate while the substrate is exposed to a magnetic field. An intermediate layer may be positioned between the substrate and the ferrite to promote bonding of the ferrite to the substrate. The process may be performed at temperatures less than 300° C. Ferrite film anisotropy may be achieved by embodiments of the invention in the range of about 1000 dyn-cm/cm3 to about 2×106 dyn-cm/cm3.
    Type: Application
    Filed: June 22, 2001
    Publication date: January 2, 2003
    Inventors: Debra Anne Fleming, Gideon S. Grader, David Wilfred Johnson, John Thomson, Robert Bruce Van Dover
  • Patent number: 6437392
    Abstract: The invention relates to dielectric materials comprising films of R—Ge—Ti—O where R is selected from Zr and Hf, and to methods of making the same. The dielectric material preferably has the formula Rx—Gey—Tiz—Ow where 0.05≧x≦1, 0.05≧y≦1, 0.1≧z≦1, and 1≧w≦2, and x+y+z≅1, and more preferably, where 0.15≧x≦0.7, 0.05≧y≦0.3, 0.25≧z≦0.7, and 1.95≧w≦2.05, and x+y+z≅1. The invention is particularly useful in silicon-chip integrated circuit devices including a capacitor of a dynamic random access memory (DRAM) device.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: August 20, 2002
    Assignee: Agere Systems Optoelectronics Guardian Corp.
    Inventors: Lynn Frances Schneemeyer, Robert Bruce Van Dover
  • Patent number: 6320479
    Abstract: In accordance with the invention, magnetostrictive saw devices are provided with improved transducer structures for enhanced performance. In one improved device, the transducers are in the form of gratings with interconnected ends for reduced resistance and inductance. In another embodiment, the transducers are shaped to provide apodization. In yet a third embodiment, transducer performance is enhanced by patterning composite structures.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: November 20, 2001
    Assignee: Agere Systems Optoelectronics Guardian Corp.
    Inventors: Glenn B. Alers, Kenneth Alexander Ellis, Timothy J. Klemmer, Robert Bruce Van Dover
  • Patent number: 6291402
    Abstract: Some mechanical, electrical, and thermal properties of high Tc superconductors such as (Ba, Y) cuprates can be substantially improved by the dispersal of an appropriate metal in the superconductive body. For instance, mixing Ag particles with superconductive powder of nominal composition Ba2YCu3O7 and processing the mixture in the conventional manner can produce superconductive bodies having Tc of about 93 K and substantially greater fracture strength and normal state electrical and thermal conductivity than otherwise identical bodies that do not contain Ag particles.
    Type: Grant
    Filed: October 23, 1989
    Date of Patent: September 18, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Richard Curry Sherwood, Thomas Henry Tiefel, Robert Bruce van Dover
  • Publication number: 20010008157
    Abstract: A device having electrical contacts formed from an alloy having improved wear resistance is provided, the alloy being particularly useful in microrelay devices formed by MEMS technology. In one embodiment, the alloys are chosen to allow sufficient precipitation hardening to improve wear resistance, but keep precipitation below a level that would unacceptably reduce electrical conductivity. This is achieved by using alloying materials that have very limited or no solid solubility in the noble metal matrix, e.g., less than 4 wt. % solid solubility. In a second embodiment, an alloy contains a noble metal matrix and insoluble, dispersoid particles having no solubility in the matrix, these dispersoid particles offering a similar strengthening mechanism.
    Type: Application
    Filed: December 6, 2000
    Publication date: July 19, 2001
    Inventors: David John Bishop, Sungho Jin, Jungsang Kim, Ainissa G. Ramirez, Robert Bruce Van Dover
  • Patent number: 6060406
    Abstract: The specification describes silicon MOS devices with gate dielectrics having the composition Ta.sub.1-x Al.sub.x O.sub.y, where x is 0.03-0.7 and y is 1.5-3, Ta.sub.1-x Si.sub.x O.sub.y, where x is 0.05-0.15, and y is 1.5-3, and Ta.sub.1-x-z Al.sub.x Si.sub.z O.sub.y, where 0.7>x+z>0.05, z<0.15 and y is 1.5-3. By comparison with the standard SiO.sub.2 gate dielectric material, these materials provide improved dielectric properties and also remain essentially amorphous to high temperatures. This retards formation of SiO.sub.2 interfacial layers which otherwise dominate the gate dielectric properties and reduce the overall effectiveness of using a high dielectric material.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: May 9, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Glen B. Alers, Robert McLemore Fleming, Lynn Frances Schneemeyer, Robert Bruce Van Dover
  • Patent number: 6046657
    Abstract: An improved surface acoustic wave device includes a film of a magnetostrictive material disposed on a substrate and spaced apart input and output transducer elements disposed on the film. The input element causes horizontally polarized shear waves to propagate along the film via the magnetostriction of the film. The shear waves propagating along the film are received by the output transducer element. The SAW device can be integrated on a microelectronic circuit useable in single chip radio frequency applications.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: April 4, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Glenn B. Alers, Robert Bruce Van Dover
  • Patent number: 5998048
    Abstract: The invention is embodied in an anisotropic, soft magnetic thin film article comprising a cobalt-iron-chromium-nitrogen (Co--Fe--Cr--N) alloy. The thin film is formed such that the alloy has a relatively high saturation magnetization (4.pi.M.sub.s), e.g., greater than approximately 8 kilogauss (kG), a relatively low coercivity (H.sub.c), e.g., less than approximately 2.0 oersteds (Oe), a relatively high squareness ratio (M.sub.r /M.sub.s), e.g., greater than approximately 0.90, and a relatively high anisotropy field (H.sub.k), e.g., greater than approximately 20 Oe, in an as-deposited condition or, alternatively, with a relatively low temperature treatment, e.g., below approximately 300.degree. Celsius. The inventive films are suitable for use in electromagnetic devices, e.g., in microtransformer cores, inductor cores and in magnetic read-write heads.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: December 7, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Timothy J. Klemmer, Thomas Henry Tiefel, deceased, Robert Bruce Van Dover, Wei Zhu
  • Patent number: 5977582
    Abstract: A dielectric layer consisting essentially of Ta, Al, oxygen and nitrogen can have advantageous properties that make such a layer useful for thin film capacitors, typically capacitors for Si integrated circuits. For instance, a significantly greater fraction of capacitors according to the invention than of prior art tantalum oxide capacitors can store a charge of 3 .mu.coulomb/cm.sup.2. In a currently preferred embodiment, the dielectric layer has composition Ta.sub.1-y Al.sub.y O.sub.x N.sub.z, with y.about.0.1, x.about.2.4, and z.about.0.02. The dielectric layer can be formed by sputter deposition or any other appropriate deposition technique, e.g., chemical vapor deposition.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: November 2, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Robert McLemore Fleming, Lynn Frances Schneemeyer, Robert Bruce van Dover
  • Patent number: 5976715
    Abstract: The invention is embodied in a soft magnetic thin film article comprising an iron--chromium-nitrogen (Fe--Cr--N) based alloy and methods for making such article. The soft magnetic thin film article is formed using an iron--chromium--nitrogen based alloy with tantalum in one embodiment and with at least one of the elements titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), molybdenum (Mo), niobium (Nb) or tungsten (W) in another embodiment. The article is formed such that the alloy has a relatively high saturation magnetization (e.g., greater than approximately 15 kG) and a relatively low coercivity (e.g., less than approximately 2.0 oersteds) in an as-deposited condition or, alternatively, with a very low temperature treatment (e.g., below approximately 150.degree. C.). The inventive films are suitable for use in electromagnetic devices, for example, in microtransformer cores, inductor cores and in magnetic read-write heads.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: November 2, 1999
    Assignee: Lucent Techologies Inc.
    Inventors: Li-Han Chen, Sungho Jin, Wei Zhu, Robert Bruce van Dover
  • Patent number: 5956073
    Abstract: Embodiments of the invention include a transformer device having a saturation region for limiting ingress noise and other noise. The transformer comprises a magnetic core, an input coil and an output coil arranged so that the output signal caused by the magnetic linkage between the input and output coils through the magnetic core is based on the magnitude of the input signal. According to an embodiment of the invention, the magnetic core includes a saturation region that limits the output signal regardless of the magnitude of the input signal once the saturation region reaches its saturation magnetization state. The saturation region comprises a reduced saturation magnetization level caused by a geometrically constricted region of the magnetic core or, alternatively, by a modified, magnetic-equivalent region having properties similar to a geometrically constricted region.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: September 21, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Joseph Michael Nemchik, Robert Bruce Van Dover, Wei Zhu
  • Patent number: 5912797
    Abstract: A thin dielectric film that uses an amorphous composition of R--Sn--Ti--O as the main component is disclosed, wherein R is Zr or Hf, having particular application for use in a capacitor of a DRAM cell. The preferable range of the dielectric thin film composition is centered around Zr.sub.x Sn.sub.y Ti.sub.z O.sub.w, where 0.1.ltoreq.x.ltoreq.1.8; 0.1.ltoreq.y.ltoreq.1.6; 0.2.ltoreq.z.ltoreq.1.9; and 2.0.ltoreq.w.ltoreq.4.0; and x+y+z=2. Preferably, x is about 0.2, y is about 0.2, and z is about 0.6. Doping of the composition with nitrogen is further disclosed as improving the dielectric properties and uniformity of the film.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: June 15, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Lynn Frances Schneemeyer, Robert Bruce van Dover