Patents by Inventor Robert Charles Preston

Robert Charles Preston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760041
    Abstract: A method of forming a wind turbine blade shear web flange section (36) by resin transfer moulding comprises providing a mould assembly (84) comprising a mould surface (86) defining a mould cavity and arranging a plurality of elongate flange elements (46) with the mould surface in an array (80) such that the flange elements are positioned one on top of another with first and second longitudinal ends (56,60) of each flange element longitudinally offset from respective first and second longitudinal ends of a neighbouring flange element so as to form a tapered portion (58,62) at each of a first and second longitudinal end of the flange section (36). A The method further comprises injecting resin to the mould cavity and curing the array of flange elements in a resin matrix to form a cured flange section having a laminate construction.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 19, 2023
    Assignee: Vestas Wind Systems A/S
    Inventors: Jonathan Smith, Robert Charles Preston
  • Patent number: 11761422
    Abstract: A wind turbine blade shear web comprises an elongate panel (28) having a first side and an opposing second side and a longitudinally extending flange (30a, 30b) arranged along a longitudinal edge of the panel. The flange comprises a plurality of elongate flange sections (46) arranged along the first side of the panel and integrated therewith. Each flange section comprises a plurality of elongate flange elements arranged one on top of another and offset from one another in a longitudinal direction of the flange section (46) such that the offset between the flange elements defines a tapered portion at each of a first and second longitudinal end of the flange section. The tapered portions of longitudinally adjacent flange sections overlap to define at least one scarf joint between said adjacent flange sections.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 19, 2023
    Assignee: Vestas Wind Systems A/S
    Inventor: Robert Charles Preston
  • Publication number: 20230228551
    Abstract: The invention provides a method of inspecting a wind turbine blade. The method includes providing a defect inspection tool having an array of pins, the pins being displaceable in an axial direction relative to one another. The method includes positioning the defect inspection tool against a defect on the wind turbine blade to cause displacement of at least some of the pins in the axial direction, the displaced pins describing a contour representative of a contour of the defect. The method includes determining dimensions f the defect by inspecting the contour described by the displaced pins. Advantageously, the invention provides for a more accurate determination as to whether a defect needs to be repaired.
    Type: Application
    Filed: September 27, 2021
    Publication date: July 20, 2023
    Inventors: Jonathan Smith, Robert Charles Preston
  • Patent number: 11585319
    Abstract: Improvements relating to wind turbine blade manufacture 5 A method of making a wind turbine blade is described. The method involves providing a blade shell having an inner surface defining a mounting region and positioning a web in the mounting region. One or more web restraining devices are used to secure the position of the web in the mounting region. Each restraining device has a first portion attached to the web and a second portion attached to the inner surface of the blade shell. The 10 restraining devices are configured to prevent movement of the web in a first plane substantially parallel to the mounting region and to permit movement of the web in a second plane substantially perpendicular to the mounting region. The method further comprises moving the web in the second plane away from the mounting region and performing one or more preparatory operations on the mounting region with the web 15 moved away from the mounting region.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 21, 2023
    Assignee: Vestas Wind Systems A/S
    Inventors: Robert Charles Preston, Sean Keohan, Andrew Hedges
  • Publication number: 20220065819
    Abstract: A method of making and testing a wind turbine blade comprises providing a structural member having a web portion and a flange portion, where the flange portion extends away from the web portion and a curvilinear heel is defined between the web and flange portions. 5 A flange extender is integrated with the flange portion, where a first section of the flange extender overlies the flange portion, and a second section of the flange extender extends past the heel and away from the web portion. The flange extender is bonded to the inner surface of a wind turbine blade shell. Non-destructive test (NDT) equipment is used to assess the integrity of the bond by identifying first and second target surfaces of the 10 structural member. The target surfaces are spaced apart by an intermediate region, corresponding to the location of the heel, where it is not possible to positively identify any surface using NDT techniques.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 3, 2022
    Inventors: Robert Charles Preston, Sean Keohan
  • Publication number: 20220063207
    Abstract: A method of forming a structural web for a wind turbine blade comprises providing a web member having a web portion and a flange portion extending away from each other, where 5 a heel of substantially curvilinear form is located between the web portion and the flange portion. A planar flange extender comprising a cured composite material is arranged together with the web member with the flange extender positioned adjacent to the flange portion so that a portion of the flange extender projects past the heel and away from the web portion. The flange extender is integrated with the web member in a resin matrix, or 10 with an adhesive, to form the structural web. A structural web and a wind turbine blade comprising the web is disclosed.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 3, 2022
    Applicant: Vestas Wind Systems A/S
    Inventors: Robert Charles Preston, Sean Keohan
  • Publication number: 20220032562
    Abstract: A method of forming a wind turbine blade shear web flange section (36) by resin transfer moulding comprises providing a mould assembly (84) comprising a mould surface (86) defining a mould cavity and arranging a plurality of elongate flange elements (46) with the mould surface in an array (80) such that the flange elements are positioned one on top of another with first and second longitudinal ends (56,60) of each flange element longitudinally offset from respective first and second longitudinal ends of a neighbouring flange element so as to form a tapered portion (58,62) at each of a first and second longitudinal end of the flange section (36). A The method further comprises injecting resin to the mould cavity and curing the array of flange elements in a resin matrix to form a cured flange section having a laminate construction.
    Type: Application
    Filed: December 9, 2019
    Publication date: February 3, 2022
    Inventors: Jonathan Smith, Robert Charles Preston
  • Publication number: 20220034293
    Abstract: A wind turbine blade shear web comprises an elongate panel (28) having a first side and an opposing second side and a longitudinally extending flange (30a, 30b) arranged along a longitudinal edge of the panel. The flange comprises a plurality of elongate flange sections (46) arranged along the first side of the panel and integrated therewith. Each flange section comprises a plurality of elongate flange elements arranged one on top of another and offset from one another in a longitudinal direction of the flange section (46) such that the offset between the flange elements defines a tapered portion at each of a first and second longitudinal end of the flange section. The tapered portions of longitudinally adjacent flange sections overlap to define at least one scarf joint between said adjacent flange sections.
    Type: Application
    Filed: December 9, 2019
    Publication date: February 3, 2022
    Inventor: Robert Charles Preston
  • Publication number: 20210180560
    Abstract: A method of making a wind turbine blade is described. The method involves providing a blade shell having an inner surface defining a mounting region and positioning a web in the mounting region. One or more web restraining devices are used to secure the position of the web in the mounting region. Each restraining device has a first portion attached to the web and a second portion attached to the inner surface of the blade shell. The restraining devices are configured to prevent movement of the web in a first plane substantially parallel to the mounting region and to permit movement of the web in a second plane substantially perpendicular to the mounting region. The method further comprises moving the web in the second plane away from the mounting region and performing one or more preparatory operations on the mounting region with the web moved away from the mounting region. The web is then repositioned in the mounting region by moving the web in the second plane back towards the mounting region.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 17, 2021
    Inventors: Robert Charles Preston, Sean Keohan, Andrew Hedges