Patents by Inventor Robert D. Denton

Robert D. Denton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9512048
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptan into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 6, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Patent number: 9505620
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 29, 2016
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Publication number: 20160187061
    Abstract: The disclosure includes techniques associated with a collector tray assembly for a cryogenic distillation tower disposed below a slurry mix zone and above a lower distillation zone, wherein the collector tray assembly comprises a deck at a lower end of the slurry mix zone, and wherein the deck comprises at least one vapor riser configured to pass the vapor from the lower distillation zone into the slurry mix zone, wherein the vapor riser comprises a substantially vertical heat transfer section configured to pass the vapor substantially upwards through the slurry mix zone, and a vapor outlet section comprising at least one vapor outlet, wherein the vapor outlet section is below the heat transfer section.
    Type: Application
    Filed: November 18, 2015
    Publication date: June 30, 2016
    Inventors: Nicholas F. URBANSKI, Brandon Cassimere, Robert D. Denton, Wayne S. Pon
  • Publication number: 20160116210
    Abstract: A method and system of controlling a temperature within a melt tray assembly of a distillation tower. The method may include determining a melt tray fluid composition of a melt tray fluid, determining a melt tray fluid temperature of the melt tray fluid, determining if the melt tray fluid temperature is within an expected melt tray fluid temperature range for the melt tray fluid composition, decreasing the melt tray fluid temperature if the melt tray fluid temperature is greater than an expected melt tray fluid temperature range upper limit, increasing the melt tray fluid temperature if the melt tray fluid temperature is less than an expected melt tray fluid temperature range lower limit, and maintaining the melt tray fluid temperature if the melt tray fluid temperature is within the expected melt tray fluid temperature range.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 28, 2016
    Inventors: Robert D. Denton, P. Scott Northrop, Ananda K. Nagavarapu
  • Publication number: 20150354321
    Abstract: The present disclosure provides a subwater heat exchanger that includes a duct, first coils, a first impeller and a second impeller. The duct is configured to receive a first fluid. The first coils are inside of the duct and are configured to receive a second fluid that is heated or cooled by the first fluid. The first impeller is inside of the duct that is configured to initiate flow of the first fluid around the first coils. The second impeller is inside of the duct and is substantially in line with the first impeller along a duct lateral axis of the duct.
    Type: Application
    Filed: September 30, 2013
    Publication date: December 10, 2015
    Inventors: Nicholas F. Urbanski, Robert D. Denton, Charles J. Mart, Tracy A. Fowler
  • Publication number: 20150292403
    Abstract: Methods and systems for dynamically planning a well site are provided herein. Methods include flowing a raw gas stream though a suction scrubber to form a feed gas stream and compressing the feed gas stream to form a compressed gas stream. Methods include cooling the compressed gas stream in a cooler to produce a cooled gas stream. Methods include feeding the cooled gas stream into a gas treatment system, using a turboexpander, to produce a conditioned gas and a waste stream. Methods include heating the conditioned gas in a heat exchanger, where the conditioned gas is a superheated, sweetened, gas. Methods also include burning the conditioned gas in a turbine generator and mixing the waste stream into the raw gas stream upstream of the suction scrubber.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 15, 2015
    Inventor: Robert D. Denton
  • Publication number: 20150158789
    Abstract: Systems and a method are provided for producing an aromatic hydrocarbon and generating electricity from a tail gas stream. The method includes feeding a first stream including a raw natural gas into a reactor. The method includes converting the first stream, at least in part, to a second stream including an aromatic hydrocarbon within the reactor. The method includes separating the second stream into a tail gas stream and a liquid aromatic hydrocarbon stream and combusting at least a portion of the tail gas stream to generate electricity.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 11, 2015
    Inventors: Paul F. Keusenkothen, Timothy A. Barckholtz, J. Tim Cullinane, Robert D. Denton, Frank Hershkowitz, Ian J. Laurenzi
  • Publication number: 20150159944
    Abstract: The present disclosure provides a method for separating a feed stream in a distillation tower. The method may include forming solids in a controlled freeze zone section of the distillation tower; emitting radiation from a first radiation source in the controlled freeze zone section while the controlled freeze zone section forms no solids; detecting radiation emitted by the first radiation source as a first radiation level; detecting radiation emitted by the first radiation source as a second radiation level after detecting the first radiation level; and determining whether the solids adhered to at least one of on and around a first mechanical component included in the controlled freeze zone section based on the first radiation level and the second radiation level.
    Type: Application
    Filed: October 17, 2014
    Publication date: June 11, 2015
    Inventors: Jaime A. Valencia, J. Tim Cullinane, Edward J. Grave, Robert D. Denton
  • Publication number: 20150147261
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: May 28, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150119544
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptan into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Application
    Filed: May 31, 2012
    Publication date: April 30, 2015
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Publication number: 20150114819
    Abstract: Methods and a system for removing carbon nanotubes from a water stream are provided herein. The system includes a purification vessel, wherein the purification vessel is configured to form a carbon oxide from the carbon nanotubes within the water stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: April 30, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 8981169
    Abstract: A process for converting a gaseous hydrocarbon feed comprising methane to an aromatic hydrocarbon is integrated with liquefied natural gas (LNG) and/or pipeline gas production. The gaseous hydrocarbon feed is supplied to a conversion zone comprising at least one dehydroaromatization catalyst and is contacted with the catalyst under conversion conditions to produce a gaseous effluent stream comprising at least one aromatic compound, unreacted methane and H2. The gaseous effluent stream is then separated into a first product stream comprising said at least one aromatic compound and a second product stream comprising unreacted methane and H2. The second product stream is further separated into a methane-rich stream and a hydrogen-rich stream and at least part of the methane-rich stream is passed to LNG and/or pipeline gas production.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: March 17, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Robert D. Denton, Garth M. Norman, James R. Lattner
  • Publication number: 20150071848
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes forming a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C., and the carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 12, 2015
    Applicant: Solid Carbon Products LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150059571
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 5, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20140374109
    Abstract: Methods and systems for enhanced carbon dioxide capture in a combined cycle plant are described. A method includes compressing a recycle exhaust gas from a gas turbine system, thereby producing a compressed recycle exhaust gas stream. A purge stream is extracted from the compressed recycle exhaust gas stream. Carbon dioxide is removed from the extracted purge stream using a solid sorbent.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 25, 2014
    Inventors: Robert D. Denton, Himanshu Gupta, Richard A. Huntington, Moses Minta, Franklin F. Mittricker, Loren K. Starcher
  • Publication number: 20140348739
    Abstract: Systems and a method for forming carbon nanotubes are described. A method includes forming carbon nanotubes in a reactor, using a Bosch reaction. The carbon nanotubes are separated from a reactor effluent to form a waste gas stream. The feed gas, a dry waste gas stream, or both, are heated with waste heat from the waste gas stream. The waste gas stream is chilled in an ambient temperature heat exchanger to condense water vapor, forming a dry waste gas stream.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Robert D. Denton, Dallas B. Noyes
  • Publication number: 20140303418
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptan into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 9, 2014
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Publication number: 20140250912
    Abstract: A method for generating steam for hydrocarbon production is provided. The method includes producing steam using heat from an exhaust stream from a gas turbine system. A water stream is condensed from combustion products in the exhaust stream, and the water stream is used as a make-up water for production of the steam.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 11, 2014
    Inventors: Richard A. Huntington, Robert D. Denton, Patrick D. McMahon, Lalit K. Bohra, Jasper L. Dickson
  • Publication number: 20140250945
    Abstract: The present techniques are directed to a system and method for recovering carbon dioxide (CO2). The method includes recovering the CO2 from a gas mixture including the CO2 via a CO2 separation system. The CO2 separation system includes a rotating freezer/melter.
    Type: Application
    Filed: February 17, 2014
    Publication date: September 11, 2014
    Inventors: Richard A. Huntington, Robert D. Denton, Sulabh K. Dhanuka
  • Publication number: 20140083109
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 27, 2014
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, Omar Angus Sites, Franklin F. Mittricker