Patents by Inventor Robert E. Overfield

Robert E. Overfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5076909
    Abstract: A sample of a hydrocarbon oil containing asphaltenes is chromatographically analyzed by forming a mixture of the oil with a weak solvent. The mixture is passed in contact with a column of a stationary phase of fine solid particles of fully functionalized material, followed by a weak solvent. The solvent, after recovery from the column, is analyzed for aromatics by UV-absorption of UV radiation in the range 200 to 400 nm. The absorbance of the UV light by the irradiated eluents across the UV wavelength range is monitored and the integral of absorbance is derived as a function of photon energy across the wavelength range. The magnitude of the derived integral in at least one time interval corresponding with aromatics in the eluent from the stationary phase is measured as an indication of the level of aromatics in the oil sample. The weak solvent may be followed by a strong solvent which, in turn, may be followed by a strong solvent which is modified by the addition of a hydrogen bonding solvent.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: December 31, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert E. Overfield, Winston K. Robbins, Joel I. Haberman
  • Patent number: 4988446
    Abstract: A sample of a hydrocarbon oil containing asphaltenes is chromatographically analyzed by forming a mixture of the oil with a weak solvent. The mixture is passed in contact with a column of a stationary phase of fine solid particles of fully functionalized material, followed by a weak solvent. The solvent, after recovery from the column, is analyzed for aromatics by UV-absorption of UV radiation in the range 200 to 400 nm. The absorbance of the UV light by the irradiated eluents across the UV wavelength range is monitored and the integral of absorbance is derived as a function of photon energy across the wavelength range. The magnitude of the derived integral in at least one time interval corresponding with aromatics in the eluent from the stationary phase is measured as an indication of the level of aromatics in the oil sample. The weak solvent may be followed by a strong solvent which, in turn, may be followed by a strong solvent which is modified by the addition of a hydrogen bonding solvent.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: January 29, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Joel I. Haberman, Robert E. Overfield, Winston K. Robbins
  • Patent number: 4865746
    Abstract: A sample of a hdyrocarbon oil containing asphaltenes is chromatographically analyzed by forming a mixture of the oil with a weak solvent. The mixture is passed in contact with a column of a stationary phase of find solid particles of fully functionalized material, followed by a weak solvent. The solvent, after recovery from the column, is analyzed for aromatics by UV-absorption of UV radiation in the range 200 to 400 nm. The absorbance of the UV light by the irradiated eluents across the UV wavelength range is monitored and the integral of absorbance is derived as a function of photon energy across the wavelength range. The magnitude of the derived integral in at least one time interval corresponding with at least aromatics in the eluent from the stationary phase is measured as an indication of the level of aromatics in the oil sample. The weak solvent may be followed by a strong solvent which, in turn, may be followed by a strong solvent which is modified by the addition of a hydrogen bonding solvent.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: September 12, 1989
    Assignee: Exxon Research and Engineering Company
    Inventor: Robert E. Overfield
  • Patent number: 4643821
    Abstract: This invention is an integrated process for removing nickel and vanadium metalloporphyrinic compounds from oils which contain them and regenerating the solvent used to extract those metal compounds. The process involves the extraction of those compounds using certain solvents which are not miscible with the oils involved and which preferably are defined using variables known as three-dimensional solubility parameters. The solvents are regenerated for recycle to the extraction step. The most preferred solvents which meet the disclosed criteria are ethylene carbonate, propylene carbonate, ethylene trithiocarbonate and dimethylsulfone. The process is particularly suitable for removing the nickel and vanadium compounds from heavier oils such as crude oils and the so-called gas oils obtained during the early stages of the refining process.
    Type: Grant
    Filed: October 2, 1985
    Date of Patent: February 17, 1987
    Assignee: Exxon Research and Engineering Co.
    Inventor: Robert E. Overfield
  • Patent number: 4618413
    Abstract: This invention is a process for removing nickel and vanadium metalloporphyrinic compounds from oils which contain them. The process involves the extraction of those compounds using certain solvents which are not miscible with the oils involved and which are defined using variables known as three-dimensional solubility parameters. The most preferred solvents which meet the disclosed criteria are ethylene carbonate, propylene carbonate, ethylene trithiocarbonate and dimethylsulfone. The solvents are particularly useful in removing the nickel and vanadium compounds from heavier oils such as crude oils and the so-called gas oils obtained during the early stages of the refining process.
    Type: Grant
    Filed: July 15, 1985
    Date of Patent: October 21, 1986
    Assignee: Exxon Research and Engineering Company
    Inventor: Robert E. Overfield