Patents by Inventor Robert Elghanian

Robert Elghanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020155458
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: September 28, 2001
    Publication date: October 24, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020155459
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: October 11, 2001
    Publication date: October 24, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020146720
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: September 20, 2001
    Publication date: October 10, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020137072
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: October 12, 2001
    Publication date: September 26, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020137070
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: October 10, 2001
    Publication date: September 26, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020137071
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: October 10, 2001
    Publication date: September 26, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Publication number: 20020137058
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing the nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: August 7, 2001
    Publication date: September 26, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian
  • Publication number: 20020127574
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: October 10, 2001
    Publication date: September 12, 2002
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton
  • Patent number: 6417340
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing the nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: July 9, 2002
    Assignee: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian
  • Patent number: 6361944
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing the nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: March 26, 2002
    Assignee: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian