Patents by Inventor Robert F. Hogsett

Robert F. Hogsett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7842107
    Abstract: Carbonaceous materials are thermally upgraded in a pressurized steam environment to remove moisture and other byproducts. A variety of water/solid separation devices may be employed in a process vessel to maximize moisture removal from the upgraded charge. Heating media inlet nozzles and process chamber vents are strategically positioned at the process vessel wall to minimize short circuiting of heating media to vessel outlet vents and to continuously separate hot water removed from the charge and condensed steam, such that the upgraded material removed from the process vessel is not discharged with accompanying free moisture. After upgrading, the charge may be rehydrated to improve its stability during shipping and storage.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 30, 2010
    Assignee: Evergreen Energy Inc.
    Inventors: Robert F. Hogsett, Philippus J. Meyer, Michael F. Ray, Michael L. Schlegel, Sheldon L. Schultz
  • Publication number: 20100125107
    Abstract: A method of producing synthesis gas via gasification in a Fischer-Tropsch plant, the method including providing a number of gasifiers, the number of gasifiers provided being at least one more than the base number required to provide 100% plant capacity of synthesis gas when each gasifier is operated at 100% gasifier capacity. A method of continually producing synthesis gas via gasification of a carbonaceous feed in a Fischer-Tropsch plant by providing a number of gasifiers, the number of gasifiers provided being at least one more than the base number required to provide 100% plant capacity of synthesis gas when each gasifier is operated at 100% gasifier capacity; and adjusting the amount of synthesis gas produced by adjusting the number of online gasifiers, the flow rate of carbonaceous feed to each gasifier, or a combination thereof. A system for carrying out the method is also provided.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 20, 2010
    Applicant: RENTECH, INC.
    Inventors: Joshua G. LEE, Mark IBSEN, Robert F. HOGSETT, Harold A. WRIGHT
  • Publication number: 20100037516
    Abstract: Carbonaceous materials are thermally upgraded in a pressurized steam environment to remove moisture and other byproducts. A variety of water/solid separation devices may be employed in a process vessel to maximize moisture removal from the upgraded charge. Heating media inlet nozzles and process chamber vents are strategically positioned at the process vessel wall to minimize short circuiting of heating media to vessel outlet vents and to continuously separate hot water removed from the charge and condensed steam, such that the upgraded material removed from the process vessel is not discharged with accompanying free moisture. After upgrading, the charge may be rehydrated to improve its stability during shipping and storage.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: Evergreen Energy Inc.
    Inventors: Robert F. Hogsett, Philippus J. Meyer, Michael F. Ray, Michael L. Schlegel, Sheldon L. Schultz
  • Patent number: 7198655
    Abstract: Carbonaceous materials are thermally upgraded in a pressurized steam environment to remove moisture and other byproducts. A variety of water/solid separation devices may be employed in a process vessel to maximize moisture removal from the upgraded charge. Heating media inlet nozzles and process chamber vents are strategically positioned at the process vessel wall to minimize short circuiting of heating media to vessel outlet vents and to continuously separate hot water removed from the charge and condensed steam, such that the upgraded material removed from the process vessel is not discharged with accompanying free moisture. After upgrading, the charge may be rehydrated to improve its stability during shipping and storage.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 3, 2007
    Assignee: Evergreen Energy Inc.
    Inventors: Robert F. Hogsett, Philippus J. Meyer, Michael F. Ray, Michael L. Schlegel, Sheldon L. Schultz
  • Patent number: 6428763
    Abstract: The present invention is a process for the rapid conversion of iron oxide-containing material into iron carbide. The process includes a first step in which the iron oxide-containing material is contacted with a reducing gas that contains a high concentration of hydrogen gas to form a metallic iron-containing intermediate product and a second step in which the metallic iron-containing product is contacted with a carburizing gas having high concentrations of hydrogen and carbon monoxide gas to produce iron carbide. The unused carbon monoxide in the off-gas from the second step is not recycled to the second step but is used as a fuel source.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: August 6, 2002
    Assignee: Iron Carbide Holdings, Ltd.
    Inventors: Frank M. Stephens, Jr., Frank A. Stephens, Robert F. Hogsett, John P. Hager
  • Patent number: 5733357
    Abstract: A process for converting iron oxide to iron carbide using hydrogen as a reducing gas. Water is generated by the reduction of the iron oxides using hydrogen. The amount of water present in the reactor system is controlled and the water is contacted with methane in order to internally generate carbon monoxide and/or carbon dioxide gas. The carbon monoxide and/or carbon dioxide is subsequently employed to carburize the iron to iron carbide.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: March 31, 1998
    Assignee: Iron Carbide Holdings, Ltd.
    Inventors: Frank M. Stephens, Jr., Frank A. Stephens, Robert F. Hogsett
  • Patent number: 4610722
    Abstract: A process is provided for hydrometallurgical processing of steel plant dusts containing cadmium, lead, zinc, and iron values, along with impurities such as chloride and fluoride salts of sodium, potassium, magnesium, etc. The first step in the process involves leaching the dust in a mixed sulfate-chloride medium that dissolves most of the zinc and cadmium. Any iron and aluminum dissolved in this step is precipitated by oxidation and neutralization. Zinc is recovered from the resulting solution by solvent extraction which provides a raffinate which is recycled to the leaching step with a bleed stream also provided for recovery of cadmium and removal of other impurities from the circuit. The lead sulfate residue from the leaching step is leached with caustic soda, and zinc dust is used to cement the lead out from the caustic solution, which then joins the main solution for zinc recovery.
    Type: Grant
    Filed: January 31, 1985
    Date of Patent: September 9, 1986
    Assignee: AMAX Inc.
    Inventors: Willem P. C. Duyvesteyn, Robert F. Hogsett
  • Patent number: 4552629
    Abstract: A hydrometallurgical process is provided to electrogalvanize steel, utilizing primary and secondary zinc sources. The process consists of leaching the feed in a mildly acidic solution. The zinc is selectively recovered from the leach liquor in a solvent extraction system and thereafter stripped from the solvent using a stronger acidic solution to provide a strip solution which is fed to an electrogalvanizing bath for electrogalvanizing steel products, e.g., sheet steel, using insoluble anodes. Acidic solutions and organic solvent are recycled in the process.
    Type: Grant
    Filed: January 31, 1985
    Date of Patent: November 12, 1985
    Assignee: Amax, Inc.
    Inventors: Willem P. C. Duyvesteyn, Robert F. Hogsett
  • Patent number: 4551314
    Abstract: A solvent extraction process is provided for transferring metal values from one immiscible liquid phase to another, whereby the two liquid phases are vigorously mixed together in a first mixer under conditions in which one liquid phase is rendered continuous, the mixing being continued to effect complete transfer of metal values, and the mixture then passed to a second mixer and the two phases mixed under conditions in which the other phase is rendered continuous, whereby when the two phases are fed to a settler, the rate of disengagement of the two immiscible liquids is substantially increased.
    Type: Grant
    Filed: April 11, 1984
    Date of Patent: November 5, 1985
    Assignee: Amax Inc.
    Inventors: Leo W. Beckstead, Linn D. Havelick, Robert F. Hogsett
  • Patent number: 4504448
    Abstract: Foaming in the hydrometallurgical treatment of a tungsten-containing aqueous solution due to the presence of carbonaceous organic material impurities, such as flotation reagents, is substantially inhibited by the addition of effective amounts of powdered activated carbon, the carbon with the adsorbed impurities being thereafter separated from the solution by filtering. The activated carbon also protects the solvent extraction circuit from contamination. The method is particularly applicable to slurries of tungsten oxide concentrates during the high temperature, high pressure leaching thereof with sodium carbonate solutions in an autoclave.
    Type: Grant
    Filed: February 27, 1984
    Date of Patent: March 12, 1985
    Assignee: Amax Inc.
    Inventors: Dennis E. Voelker, Leo W. Beckstead, Robert F. Hogsett
  • Patent number: 4490339
    Abstract: A process is provided for recovering molybdenum and tungsten separately from a sulfide cake containing the same along with arsenic as an impurity. The process comprises dissolving essentially all of the tungsten and molybdenum values contained in the cake in a caustic solution containing at least about 5 but not more than about 6 moles of sodium hydroxide per mole of tungsten plus molybdenum contained in the cake, separating insoluble material from the resulting leach solution and then precipitating one metal value from the group consisting of molybdenum and tungsten preferentially from the other.
    Type: Grant
    Filed: February 6, 1984
    Date of Patent: December 25, 1984
    Assignee: Amax Inc.
    Inventors: Leo W. Beckstead, Robert F. Hogsett, Dennis E. Voelker
  • Patent number: 4443415
    Abstract: Vanadium and nickel values are selectively recovered from a petroleum coke residue by slurrying the coke in an aqueous solution of sodium carbonate providing an excess of the stoichiometric amount of sodium for formation of sodium vanadate and sodium sulfate, and then digesting the slurry at moderately elevated temperature in a pressurized autoclave under an oxygen overpressure supplying at least the stoichiometric amount of oxygen based on the vanadium and sulfur content of the slurry and advantageously sufficient additional oxygen to provide the thermal requirements of the digestion step by oxidation of carbon. In a continuous embodiment, the feed slurry temperature and feed solids content are adjusted according to a substantially inversely correlated relationship. The digestion temperature for a given total pressure and gas flow rate in the autoclave is adjusted to generate a pregnant liquor containing about 20 gpl to about 100 gpl of vanadate (V.sub.2 O.sub.
    Type: Grant
    Filed: June 22, 1982
    Date of Patent: April 17, 1984
    Assignee: Amax Inc.
    Inventors: Paul B. Queneau, Robert F. Hogsett, Leo W. Beckstead, Dale K. Huggins
  • Patent number: 4342728
    Abstract: Oxide ores or ore concentrates containing organic matter are slurried with water and heated to a temperature of at least about 230.degree. C. under an oxygen partial pressure of at least about 25 psi to oxidize the organic matter. Advantageously, the process in accordance with the present invention can be used in the treatment of tungsten concentrates and can be employed while the tungsten concentrates are being digested with sodium carbonate or sodium hydroxide solutions.
    Type: Grant
    Filed: January 19, 1981
    Date of Patent: August 3, 1982
    Assignee: AMAX Inc.
    Inventors: Paul B. Queneau, Leo W. Beckstead, Robert F. Hogsett
  • Patent number: 4338287
    Abstract: A process for conditioning a tungsten concentrate containing tungsten as WO.sub.3, sulfur as sulfide, and calcite to fix at least a portion of the sulfur as calcium sulfate by reaction with the calcite, comprises providing a tungsten concentrate having a calcite content such that less than about 15 wt. % calcium sulfate based on the weight of the WO.sub.3 in the concentrate will be formed and heating the concentrate to a temperature of at least about 500.degree. C. in an oxidizing atmosphere to oxidize substantially all the sulfur in the concentrate to provide a conditioned concentrate having a calcium sulfate content less than about 15% based on the weight of the WO.sub.3, whereby the conditioned concentrate can be efficiently leached with alkali metal carbonates or hydroxides and the resulting alkali metal tungstate solution can be effectively treated to recover an ammonium tungstate solution.
    Type: Grant
    Filed: January 19, 1981
    Date of Patent: July 6, 1982
    Assignee: Amax Inc.
    Inventors: Robert F. Hogsett, Dale K. Huggins, Leo W. Beckstead
  • Patent number: 4303623
    Abstract: Dissolved molybdenum is removed from sodium tungstate solutions by adding sulfuric acid to lower the pH value of the solution to between about 8 and about 5, adding to the sodium tungstate solution a water-soluble sulfide in an amount of at least 0.5 gram per liter (gpl) in excess of that required to precipitate as sulfides molybdenum and certain other metals, then lowering the pH value of the sodium tungstate solution to between about 4.0 and about 1.5 as rapidly as possible with sulfuric acid in such a way as to precipitate molybdenum trisulfide while minimizing co-precipitation of tungsten.
    Type: Grant
    Filed: January 19, 1981
    Date of Patent: December 1, 1981
    Assignee: Amax Inc.
    Inventors: Dale K. Huggins, Paul B. Queneau, Robert C. Ziegler, Leo W. Beckstead, Robert F. Hogsett