Patents by Inventor Robert F. Kunz

Robert F. Kunz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8992163
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 31, 2015
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 8684904
    Abstract: A blood pump includes an impeller having a plurality of foldable blades and a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller can reside in the expandable portion of the cannula. The cannula has a collapsed condition for percutaneous delivery to a desired location within the body, and an expanded condition in which the impeller can rotate to pump blood. A flexible drive shaft can extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 1, 2014
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Robert L. Campbell, Justin M. Walsh, Daniel Metrey, Robert F. Kunz, Thomas M. Mallison, Edward Boone, Eric Myer, Mark W. McBride, Kevin J. Powell, Daniel A. Walters
  • Publication number: 20130331639
    Abstract: A blood pump includes an impeller having a plurality of foldable blades and a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller can reside in the expandable portion of the cannula. The cannula has a collapsed condition for percutaneous delivery to a desired location within the body, and an expanded condition in which the impeller can rotate to pump blood. A flexible drive shaft can extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicants: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Robert L. Campbell, Justin M. Walsh, Daniel Metrey, Robert F. Kunz, Thomas M. Mallison, Edward Boone, Eric Meyer, Mark W. McBride, Kevin J. Powell, Daniel A. Walters
  • Patent number: 8578807
    Abstract: A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: November 12, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Robert F. Kunz, Richard B. Medvitz, Matthew John Hill
  • Patent number: 8535211
    Abstract: A blood pump includes an impeller having a plurality of foldable blades and a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller can reside in the expandable portion of the cannula. The cannula has a collapsed condition for percutaneous delivery to a desired location within the body, and an expanded condition in which the impeller can rotate to pump blood. A flexible drive shaft can extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 17, 2013
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Robert L. Campbell, Justin M. Walsh, Daniel Metrey, Robert F. Kunz, Thomas M. Mallison, Edward Boone, Eric Myer, Mark W. McBride, Kevin J. Powell, Daniel A. Walters
  • Publication number: 20130066140
    Abstract: An impeller includes a hub and a blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as blood, and may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicants: THORATEC CORPORATION, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Patent number: 8376707
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 19, 2013
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20120312115
    Abstract: A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.
    Type: Application
    Filed: April 18, 2012
    Publication date: December 13, 2012
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Robert F. Kunz, Richard B. Medvitz, Matthew John Hill
  • Publication number: 20110236210
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicants: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 7927068
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: April 19, 2011
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20110071338
    Abstract: An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 24, 2011
    Applicants: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Publication number: 20110004046
    Abstract: A blood pump includes an impeller having a plurality of foldable blades and a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller can reside in the expandable portion of the cannula. The cannula has a collapsed condition for percutaneous delivery to a desired location within the body, and an expanded condition in which the impeller can rotate to pump blood. A flexible drive shaft can extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicants: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Robert L. Campbell, Justin M. Walsh, Daniel Metrey, Robert F. Kunz, Thomas M. Mallison, Edward Boone, Eric Myer, Mark W. McBride, Kevin J. Powell, Daniel A. Walters
  • Patent number: 7841976
    Abstract: An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 30, 2010
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Publication number: 20090060743
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Application
    Filed: June 9, 2008
    Publication date: March 5, 2009
    Applicants: The Penn State Research Foundation, Datascope Investment Corp.
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 7393181
    Abstract: An impeller according to an example of the present invention comprises a hub, and at least one blade supported by the hub. The impeller has a deployed configuration in which the blade extends away from the hub, and a stored configuration in which the impeller is radially compressed, for example by folding the blade towards the hub. The impeller may comprise a plurality of blades, arranged in blade rows, to facilitate radial compression of the blades. The outer edge of a blade may have a winglet, and the base of the blade may have an associated indentation to facilitate folding of the blade.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 1, 2008
    Assignees: The Penn State Research Foundation, Datascope Investment Corporation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky