Patents by Inventor Robert F. Robinson

Robert F. Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148750
    Abstract: Prostamide-containing biodegradable intraocular implants, prostamide compounds, prostamide-containing pharmaceutical compositions, and methods for making and using such implants and compositions for the immediate and sustained reduction of intraocular pressure and treatment of glaucoma in an eye of a patient are described.
    Type: Application
    Filed: May 15, 2023
    Publication date: May 9, 2024
    Inventors: Patrick M. Hughes, Jie Shen, Michael R. Robinson, David F. Woodward, Robert M. Burk, Hui Li, Jinping Wan, Chandrasekar Durairaj, Gyorgy F. Ambrus, Ke Wu, Danny T. Dinh
  • Patent number: 10606000
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 31, 2020
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: James R. Dunphy, John J. Sgambelluri, John J. Grunbeck, George J. Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Publication number: 20160334593
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Application
    Filed: June 17, 2016
    Publication date: November 17, 2016
    Inventors: James R. DUNPHY, John J. SGAMBELLURI, John J. GRUNBECK, George J. TALMADGE, Robert F. ROBINSON, James M. SULLIVAN, Joseph F. ROBBINS
  • Patent number: 9423564
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 23, 2016
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Patent number: 8422835
    Abstract: An optical waveguide feedthrough assembly passes at least one optical waveguide through a bulk head, a sensor wall, or other feedthrough member. The optical waveguide feedthrough assembly comprises a cane-based optical waveguide that forms a glass plug sealingly disposed in a feedthrough housing. For some embodiments, the optical waveguide includes a tapered surface biased against a seal seat formed in the housing. The feedthrough assembly can include an annular gold gasket member disposed between the tapered surface and the seal seat. The feedthrough assembly can further include a backup seal. The backup seal comprises an elastomeric annular member disposed between the glass plug and the housing. The backup seal may be energized by a fluid pressure in the housing. The feedthrough assembly is operable in high temperature and high pressure environments.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 16, 2013
    Assignee: Weatherford/Lamb, Inc.
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Patent number: 7447390
    Abstract: Optical sensors used in harsh environments require a sealed pressure tight passage of an optical waveguide into an interior of the sensor. In one embodiment, a pressure sensor assembly for determining the pressure of a fluid in a harsh environment includes a sensing element suspended within a fluid filled housing. An optical waveguide that provides communication with the sensing element couples to a feedthrough assembly, which includes a cane-based optical waveguide forming a glass plug sealingly disposed in the housing. The glass plug provides optical communication between the optical waveguide and the sensing element. A pressure transmitting device can transmit the pressure of the fluid to the fluid within the housing. The assembly can maintain the sensing element in a near zero base strain condition and can protect the sensing element from shock/vibration.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 4, 2008
    Assignee: Weatherford/Lamb, Inc.
    Inventors: James R. Dunphy, John J. Sgambelluri, John Grunbeck, George Talmadge, Robert F. Robinson, James M. Sullivan, Joseph F. Robbins
  • Patent number: 6295725
    Abstract: A method and apparatus for the installation of interchangeable core lock caps that replace the prior art individual cap installation techniques with one that, with in a single highly repeatable operation, punches the caps for a plurality of pin chambers from a strip of appropriate metal and frictionally fits them into the plurality of pin chambers. The method and apparatus of the present invention reduce the possibility of misalignment of the caps with the pin chambers to virtually zero and eliminate entirely the need to handle the small caps. These advantages are achieved by: 1) placing a lock core having pin chambers in a fixture below a slanted die having apertures registered with the pin chambers; 2) placing a strip of metal in a fixed position over the die; and 3) through a mechanical plunger linked to a plurality of punches, driving the plurality of punches sequentially through the metal strip to form punched metal caps.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: October 2, 2001
    Assignee: A-1 Security Manufacturing Corp.
    Inventors: Ricky Lee King, Robert F. Robinson
  • Patent number: 5387062
    Abstract: A portable hand-held device for code cutting notches in a key blank by a punching mechanism permits quick and easy modification to accommodate key blanks of different configurations and keys requiring different notch depth, notch spacing and notch angle. A key-gripping vise slidably held by a carriage moves transversely to the punch to achieve proper notch spacing. The carriage is controllably moved to different heights above the punch by detents in a circular drum, whereby the depth of the notch is determined. The punch rod and matching anvil may be replaced to achieve a different notch angle.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: February 7, 1995
    Inventors: Ricky L. King, Robert F. Robinson