Patents by Inventor Robert Floyd Payne

Robert Floyd Payne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8269528
    Abstract: Apparatus and methods disclosed herein operate to compensate for skew between inverse phases (e.g., differential phases) of an analog signal appearing at the inputs of an analog signal capture circuit such as a track-and-hold or sample-and-hold circuit associated with an ADC or similar device. Each of two capture clocks is used to capture one of the inverse phases. One or more delay circuits are configured to create a differential delay between clock transitions associated with the two capture clocks. The differential delay is proportional to the input skew between the inverse phases. The phases are consequently sampled at substantially identical points on a phase domain axis. Embodiments operate to create phase sampling synchronicity and to thereby decrease the amplitude of a common-mode signal component that results from the skew. Increased linearity and decreased distortion may result.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: September 18, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Philip M. Pratt, William David Smith
  • Publication number: 20120126869
    Abstract: Apparatus and methods disclosed herein operate to compensate for skew between inverse phases (e.g., differential phases) of an analog signal appearing at the inputs of an analog signal capture circuit such as a track-and-hold or sample-and-hold circuit associated with an ADC or similar device. Each of two capture clocks is used to capture one of the inverse phases. One or more delay circuits are configured to create a differential delay between clock transitions associated with the two capture clocks. The differential delay is proportional to the input skew between the inverse phases. The phases are consequently sampled at substantially identical points on a phase domain axis. Embodiments operate to create phase sampling synchronicity and to thereby decrease the amplitude of a common-mode signal component that results from the skew. Increased linearity and decreased distortion may result.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 24, 2012
    Inventors: ROBERT FLOYD PAYNE, Philip M. Pratt, William David Smith
  • Patent number: 7746177
    Abstract: Self-biased bipolar ring-oscillator phase-locked loops with a wide tuning range are disclosed. In a particular example, an apparatus to provide a phase-locked loop is described, comprising a voltage-controlled oscillator (VCO) to provide an output clock signal having a frequency, a quantizer, a phase-frequency detector to generate an adjustment signal, and a charge pump to modify the control voltage. The example VCO includes several ring-oscillator stages, where each ring-oscillator stage includes several gain stages to provide several output currents based on a comparison of a control voltage and several corresponding threshold voltages. The example quantizer includes several comparators to generate digital signals based on the output currents. The example charge pump modifies the control voltage based on the digital signals and the adjustment signal, and includes several switching elements to increase or decrease current to the charge pump based on the digital signals.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 29, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Zhiheng Cao, Robert Floyd Payne
  • Publication number: 20090322431
    Abstract: Self-biased bipolar ring-oscillator phase-locked loops with a wide tuning range are disclosed. In a particular example, an apparatus to provide a phase-locked loop is described, comprising a voltage-controlled oscillator (VCO) to provide an output clock signal having a frequency, a quantizer, a phase-frequency detector to generate an adjustment signal, and a charge pump to modify the control voltage. The example VCO includes several ring-oscillator stages, where each ring-oscillator stage includes several gain stages to provide several output currents based on a comparison of a control voltage and several corresponding threshold voltages. The example quantizer includes several comparators to generate digital signals based on the output currents. The example charge pump modifies the control voltage based on the digital signals and the adjustment signal, and includes several switching elements to increase or decrease current to the charge pump based on the digital signals.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Zhiheng Cao, Robert Floyd Payne
  • Patent number: 7636875
    Abstract: A digital data interface system comprises a data transmitter configured to transmit a data word across a plurality of data lines. The data word can comprise a plurality of digital data bits having a bit number order from a lowest bit number to a highest bit number with the lowest ordered bit numbers having higher noise content and the highest ordered bit numbers having higher harmonic content. The system also comprises an encoder configured to arrange the plurality of digital data bits as serialized data sets to be transmitted over each of the plurality of data lines by the data transmitter with consecutive data bits of at least one serialized data set being matched such that bits with the higher harmonic content are matched with bits of the higher noise content to substantially mitigate of at least one of the noise content and the harmonic content of the data word.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: December 22, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Marco Corsi, Robert Floyd Payne
  • Publication number: 20080222390
    Abstract: A digital data interface system comprises a data transmitter configured to transmit a data word across a plurality of data lines. The data word can comprise a plurality of digital data bits having a bit number order from a lowest bit number to a highest bit number with the lowest ordered bit numbers having higher noise content and the highest ordered bit numbers having higher harmonic content. The system also comprises an encoder configured to arrange the plurality of digital data bits as serialized data sets to be transmitted over each of the plurality of data lines by the data transmitter with consecutive data bits of at least one serialized data set being matched such that bits with the higher harmonic content are matched with bits of the higher noise content to substantially mitigate of at least one of the noise content and the harmonic content of the data word.
    Type: Application
    Filed: April 5, 2007
    Publication date: September 11, 2008
    Inventors: Marco Corsi, Robert Floyd Payne
  • Patent number: 7376211
    Abstract: The present invention facilitates clock and data recovery for serial data streams by providing a mechanism that can be employed to detect and adjust operation and timing of clocks. The invention employs a differential analog circuit, using current steering logic, to process center and edge samples and identify an average operation of the clocks. The circuit can identify transitions between adjacent center/edge data samples and determine whether an identified transition is early or late for each bit in a set of consecutive bits of a received serial data stream.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: May 20, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Richard Mark Prentice
  • Patent number: 7315182
    Abstract: A serial data receiver circuit includes a pair of differential input nodes, and receiver circuitry and a termination circuit coupled between the differential input nodes. The termination circuit comprises a common mode node. A common mode control circuit is connected to the common mode node, and exhibits a substantially zero output impedance. In so doing, the common mode control circuit provides a common mode voltage to the common mode node of the termination circuit that exhibits substantially ideal termination of common mode signals and negligible loading on the differential input nodes. In another aspect, selection circuitry is provided that selectively passes single-ended or differential test signals to the differential input nodes during a test mode of operation. The selection circuitry facilitates observation of signals within the receiver circuitry.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: January 1, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Bhavesh G. Bhakta, Richard Simpson
  • Patent number: 7315596
    Abstract: The present invention facilitates clock and data recovery (330,716/718) for serial data streams (317,715) by providing a mechanism that can be employed to maintain a fixed tracking capability of an interpolator based CDR circuit (300,700) at multiple data rates (e.g., 800). The present invention further provides a wide data rate range CDR circuit (300,700), yet uses an interpolator design optimized for a fixed frequency. The invention employs a rate programmable divider circuit (606,656,706) that operates over a wide range of clock and data rates (e.g., 800) to provide various phase correction step sizes (e.g., 800) at a fixed VCO clock frequency. The divider (606,656,706) and a finite state machine (FSM) (612,662,712) of the exemplary CDR circuit (600,650,700) are manually programmed based on the data rate (614,667).
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: January 1, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Bharadwaj Parthasarathy
  • Patent number: 6933759
    Abstract: The present invention facilitates serial communication by performing duty cycle correction. A duty cycle correction component 302 performs duty cycle corrections on a pair of differential sinusoidal signals according to a pair of adjustment signals and, as a result, generates a differential pair of square wave signals. A cross coupled buffer 306 buffers the differential pair of square wave signals and provides the buffered signals to a feedback circuit 304 that measures duty cycles of the signals and generates the pair of adjustment signals accordingly. The buffer 306 can also remove skew from the signals. In a transmitter 102, the buffered signals are also generally provided to a multiplexer 112 or encoder and in a receiver 106, the buffered signals are also generally provided to a sampling component 122.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: August 23, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Lin Wu, Robert Floyd Payne, Paul Eric Landman, Woo Jin Kim
  • Patent number: 6865222
    Abstract: An integrated circuit (12) contains a serializing transmitter, including a phase locked loop (31) that supplies seven clocks (41) with different phases to a serializer circuit (32). The serializer circuit accepts 7-bit words at a parallel input (42), and outputs these words serially in an end-to-end manner on a twisted pair (17), as a clock signal. The serializer circuit also accepts 7-bit words on a further parallel input (43), and transmits them serially in an end-to-end manner on a twisted pair (18), as serialized data. The integrated circuit also includes a built-in self-test circuit (33), which can supply test information to the two parallel inputs of the serializer circuit, and which can monitor the two twisted pairs while the serializer circuit operates at high data rates typical of normal operation, in order to detect any errors introduced by the serializer circuit. The self-test circuit produces a single digital output (48) to indicate whether an error has been detected.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: March 8, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Robert Floyd Payne
  • Patent number: 6353343
    Abstract: A digital differential receiver IC that rejects the inter-symbol interference (ISI) that is imposed upon differential digital signals when long runs of a digital state (0 or 1) are transmitted over long cables. The ISI-rejecting differential receiver IC is implemented in either bipolar technology (n-p-n or p-n-p) or in insulated gate FET technology (p-channel or n-channel). The primary differential pair of transistors is connected to a secondary differential pair of transistors through a filter network so that a high pass “shelf” filter transfer function exists between the differential input signals and the output signals. This transfer function mitigates ISI by reducing the gain for long runs of a digital state (low frequencies) and enhancing the gain for the state transition edges (high frequencies).
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: March 5, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Scott H. Noakes