Patents by Inventor Robert Franch

Robert Franch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080025371
    Abstract: A device temperature measurement circuit, an integrated circuit (IC) including a device temperature measurement circuit, a method of characterizing device temperature and a method of monitoring temperature. The circuit includes a constant current source and a clamping device. The clamping device selectively shunts current from the constant current source or allows the current to flow through a PN junction, which may be the body to source/drain junction of a field effect transistor (FET). Voltage measurements are taken directly from the PN junction. Junction temperature is determined from measured junction voltage.
    Type: Application
    Filed: October 4, 2007
    Publication date: January 31, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPERATION
    Inventors: Robert Franch, Keith Jenkins
  • Publication number: 20070206656
    Abstract: A device temperature measurement circuit, an integrated circuit (IC) including a device temperature measurement circuit, a method of characterizing device temperature and a method of monitoring temperature. The circuit includes a constant current source and a clamping device. The clamping device selectively shunts current from the constant current source or allows the current to flow through a PN junction, which may be the body to source/drain junction of a field effect transistor (FET). Voltage measurements are taken directly from the PN junction. Junction temperature is determined from measured junction voltage.
    Type: Application
    Filed: May 11, 2007
    Publication date: September 6, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPERATION
    Inventors: Robert Franch, Keith Jenkins
  • Publication number: 20070103141
    Abstract: A circuit and method for measuring duty cycle uncertainty in an on-chip global clock. A global clock is provided to a delay line at a local clock buffer. Delay line taps (inverter outputs) are inputs to a register that is clocked by the local clock buffer. The register captures clock edges, which are filtered to identify a single location for each edge. Imbalance in space between the edges indicated imbalance in duty cycle. Up/down signals are generated from any imbalance and passed to a phase locked loop to adjust the balance.
    Type: Application
    Filed: January 3, 2007
    Publication date: May 10, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert Dixon, Robert Franch, Phillip Restle
  • Publication number: 20050232333
    Abstract: A device temperature measurement circuit, an integrated circuit (IC) including a device temperature measurement circuit, a method of characterizing device temperature and a method of monitoring temperature. The circuit includes a constant current source and a clamping device. The clamping device selectively shunts current from the constant current source or allows the current to flow through a PN junction, which may be the body to source/drain junction of a field effect transistor (FET). Voltage measurements are taken directly from the PN junction. Junction temperature is determined from measured junction voltage.
    Type: Application
    Filed: April 14, 2004
    Publication date: October 20, 2005
    Inventors: Robert Franch, Keith Jenkins
  • Publication number: 20050107970
    Abstract: A circuit for measuring timing uncertainty in a clocked digital path and in particular, the number of logic stages completed in any clock cycle. A local clock buffer receives a global clock and provides a complementary pair of local clocks. A first local (launch) clock is an input to a delay line, e.g., 3 clock cycles worth of series connected inverters. Delay line taps (inverter outputs) are inputs to a register that is clocked by the complementary clock pair to capture progression of the launch clock through the delay line and identify any variation (e.g., from jitter, VDD noise) in that progression. Global clock skew and across chip gate length variation can be measured by cross coupling launch clocks from a pair of such clock buffers and selectively passing the local and remote launch clocks to the respective delay lines.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 19, 2005
    Inventors: Robert Franch, William Huott, Norman James, Phillip Restle, Timothy Skergan