Patents by Inventor Robert G. Mann

Robert G. Mann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160039124
    Abstract: A process for preparing low moisture content polymer biomaterial composites and expandable polymer biomaterial composites by extrusion through a die plate into a waterbox and pelletizing with cutter blades. Polyolefins or condensation polymers are melt blended with a solid or semi-solid biomaterial component, such as polysaccharides, including cellulosics and starches, or proteinaceious materials, including polypeptides, and are extruded, pelletized underwater, and processed with accelerated drying to achieve moisture levels as low as one percent or less.
    Type: Application
    Filed: July 13, 2015
    Publication date: February 11, 2016
    Applicant: GALA INDUSTRIES, INC.
    Inventors: J. WAYNE MARTIN, ROGER B. WRIGHT, ROBERT G. MANN
  • Publication number: 20150135547
    Abstract: A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
    Type: Application
    Filed: January 24, 2013
    Publication date: May 21, 2015
    Applicant: GALA INDUSTRIES, INC.
    Inventors: Michael ELOO, Roger B. WRIGHT, Robert G. MANN
  • Patent number: 9032641
    Abstract: A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: May 19, 2015
    Assignee: GALA INDUSTRIES, INC.
    Inventors: Michael Eloo, Roger B. Wright, Robert G. Mann
  • Publication number: 20140202019
    Abstract: A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: GALA INDUSTRIES, INC.
    Inventors: Michael ELOO, Roger B. WRIGHT, Robert G. MANN
  • Patent number: 8361364
    Abstract: A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets without subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate of from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases the speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 29, 2013
    Assignee: Gala Industries, Inc.
    Inventors: Michael Eloo, Roger B. Wright, Robert G. Mann
  • Publication number: 20120228794
    Abstract: A process for preparing low moisture content polymer biomaterial composites and expandable polymer biomaterial composites by extrusion through a die plate into a waterbox and pelletizing with cutter blades. Polyolefins or condensation polymers are melt blended with a solid or semi-solid biomaterial component, such as polysaccharides, including cellulosics and starches, or proteinaceous materials, including polypeptides, and are extruded, pelletized underwater, and processed with accelerated drying to achieve moisture levels as low as one percent or less.
    Type: Application
    Filed: February 3, 2012
    Publication date: September 13, 2012
    Inventors: J. Wayne Martin, Roger B. Wright, Robert G. Mann
  • Patent number: 8011912
    Abstract: A positionable gas nozzle assembly for injecting and directing pressurized air or other gas having an inert nature into a pellet slurry so as to increase the velocity of the slurry from a pelletizer to and through a dryer. The variably positionable nozzle can be inserted, retracted and/or intermediately positioned to facilitate start-up of the pelletization process, reduce or eliminate pellet hang-up points, maximize and optimize the velocity of the pellet slurry throughput, and to adjust the aspiration level of the pellet slurry such that the internal heat of the pellets is retained for improved degrees of crystallization and/or drying.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: September 6, 2011
    Assignee: Gala Industries, Inc.
    Inventors: Robert G. Mann, Charles W. Simmons, Robert A. Ryan
  • Patent number: 8007701
    Abstract: A positionable gas nozzle assembly having a nozzle tube for injecting and directing pressurized air or other inert gas into a pellet slurry so as to increase the velocity of the slurry from a pelletizer to and through a dryer. The variably positionable nozzle tube can be inserted, retracted and/or intermediately positioned either manually or using an automated control system. The automated control system preferably includes a pneumatic cylinder movably engaged with a carriage that is fixedly coupled to the nozzle tube. The pneumatic cylinder contains a piston that is magnetically coupled with the carriage such that movement of the piston in response to the injection of pressurized air into the cylinder also moves the carriage and the nozzle tube to obtain the variable positions.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: August 30, 2011
    Assignee: Gala Industries, Inc.
    Inventors: Robert G. Mann, Charles W. Simmons, Robert A. Ryan
  • Publication number: 20090315206
    Abstract: A positionable gas nozzle assembly having a nozzle tube for injecting and directing pressurized air or other inert gas into a pellet slurry so as to increase the velocity of the slurry from a pelletizer to and through a dryer. The variably positionable nozzle tube can be inserted, retracted and/or intermediately positioned either manually or using an automated control system. The automated control system preferably includes a pneumatic cylinder movably engaged with a carriage that is fixedly coupled to the nozzle tube. The pneumatic cylinder contains a piston that is magnetically coupled with the carriage such that movement of the piston in response to the injection of pressurized air into the cylinder also moves the carriage and the nozzle tube to obtain the variable positions.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 24, 2009
    Inventors: Robert G. Mann, Charles W. Simmons, Robert A. Ryan
  • Publication number: 20090309247
    Abstract: A positionable gas nozzle assembly for injecting and directing pressurized air or other gas having an inert nature into a pellet slurry so as to increase the velocity of the slurry from a pelletizer to and through a dryer. The variably positionable nozzle can be inserted, retracted and/or intermediately positioned to facilitate start-up of the pelletization process, reduce or eliminate pellet hang-up points, maximize and optimize the velocity of the pellet slurry throughput, and to adjust the aspiration level of the pellet slurry such that the internal heat of the pellets is retained for improved degrees of crystallization and/or drying.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 17, 2009
    Inventors: Robert G. Mann, Charles W. Simmons, Robert A. Ryan
  • Publication number: 20090206507
    Abstract: A process for preparing low moisture content polymer biomaterial composites and expandable polymer biomaterial composites by extrusion through a die plate (18) into a waterbox (16) and pelletizing with cutter blades (14). Polyolefins or condensation polymers are melt blended with a solid or semi-solid biomaterial component (155), such as polysaccharides, including cellulosics and starches, or proteinaceous materials, including polypeptides, and are extruded, pelletized underwater, and processed with accelerated drying to achieve moisture levels as low as one percent (1%) or less.
    Type: Application
    Filed: August 31, 2006
    Publication date: August 20, 2009
    Inventors: J Wayne Martin, Roger B. Wright, Robert G. Mann
  • Publication number: 20090134537
    Abstract: A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets without subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate of from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases the speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
    Type: Application
    Filed: May 24, 2006
    Publication date: May 28, 2009
    Inventors: Michael Eloo, Roger B. Wright, Robert G. Mann