Patents by Inventor Robert G. Waarts

Robert G. Waarts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5384797
    Abstract: A monolithic multi-wavelength laser diode array having a composite active region of at least two dissimilar quantum well layers that are partially mixed in at least one of their constituent atomic species in at least one area of the active region. Different areas of the active region are characterized by different emission wavelengths determined by the degree of intermixing. An impurity free interdiffusion, such as vacancy enhanced interdiffusion, is used to provide the intermixing. Each area may have one or more waveguides and distributed Bragg reflector gratings tuned to the emission wavelength of the corresponding area of the active region. Each area or waveguide may also be separately pumped with an individually addressable current injection electrode. The laser output may be coupled into a ferroelectric frequency doubler integrally formed on the array substrate.
    Type: Grant
    Filed: September 21, 1992
    Date of Patent: January 24, 1995
    Assignees: SDL, Inc., Xerox Corporation
    Inventors: David F. Welch, Robert G. Waarts, Jo S. Major, Ross D. Bringans, David K. Fork, G. A. Neville Connell, Robert L. Thornton
  • Patent number: 5321718
    Abstract: A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: June 14, 1994
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Donald R. Scifres, Robert J. Lang, Derek W. Nam
  • Patent number: 5255332
    Abstract: An optical crossbar switch matrix for use in switching optical signals from a first set of optical fibers to a second set of optical fibers, in any order, which is characterized by having a matrix of rows and columns of diffraction gratings formed in a semiconductor heterostructure. Each grating is independently biased with either a forward or reverse bias voltage to switch the grating between a reflective state and a transmissive state. The gratings are oriented at an angle relative to the rows and columns so that when the Bragg condition for the light received from an optical film is met, a portion of the light is diffracted from the row in which it is propagating into a column toward another optical fiber. The heterostructure may include optical amplifiers to restore the optical signal to its original power level. Beam expanding, collimating and focussing optics may also be integrated into the heterostructure.
    Type: Grant
    Filed: July 16, 1992
    Date of Patent: October 19, 1993
    Assignee: SDL, Inc.
    Inventors: David F. Welch, Donald R. Scifres, Robert G. Waarts, Amos A. Hardy, David G. Mehuys, Stephen O'Brien
  • Patent number: 5231642
    Abstract: A semiconductor laser that includes at least one grating reflector with a grating period selected to diffract at a nonperpendicular angle within the plane of the laser waveguide. This allows dispersal of laser light, eliminating filamentary multimode operation of broad area lasers. In one embodiment, the grating reflector couples light between a single transverse mode waveguide portion of the optical cavity and a second, broad area, portion that is not collinear with the single mode waveguide. In another embodiment, the cavity favors a ring mode of oscillation. One or more grating reflectors form part of the feedback mechanism which forms a resonant optical cavity with noncollinear portions. Other reflectors in the feedback mechanism include facet reflectors which can be cleaved or ion milled, or semiconductor material refractive index boundaries. Laser embodiments with two or more grating reflectors can be independently tuned to provide a high rate of amplitude modulation.
    Type: Grant
    Filed: May 8, 1992
    Date of Patent: July 27, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, Kenneth M. Dzurko, Robert G. Waarts, David F. Welch, Amos Hardy, Stephen O'Brien
  • Patent number: 5185752
    Abstract: Arrangements for efficiently coupling light between a laser diode and a second-harmonic generator which feature external resonant cavities that include a feedback grating fabricated on the second-harmonic generator. The feedback grating reflects light of a first frequency that matches the frequency doubling band of the second-harmonic generator, thereby establishing stable laser oscillation at that first frequency. Preferably, the second-harmonic generator has a periodically-poled waveguide formed in the surface of the nonlinear material body. The laser diode may be butted against the harmonic generator or coupling optics may be positioned between the two. In one arrangement, a polarizer is placed in the resonant cavity, either between an external back reflector and the back facet of the laser diode or between the antireflection coated front facet of the laser diode and the harmonic generator, to provide loss to the TE polarization mode and enhance oscillation in the TM polarization mode.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: February 9, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David F. Welch, Robert G. Waarts
  • Patent number: 5159604
    Abstract: In a semiconductor laser array structure in which antiguided regions between high effective refractive index waveguide regions experience greater gain then the waveguide regions, structures introduced at the sides of the array, next to the edgemost waveguides and not on the array period, reflect laterally transmitted radiation back toward the center of the array. The edge reflecting structures may be waveguide regions having widths of (m'+1/2) half-wavelengths, where "m'" is zero or a positive integer, compared to array waveguides with width m, where "m" is an integer not necessarily equal to "m'". The edge reflecting structures may also be stacks of such waveguides, where the regions between the edge waveguides are of a width substantially equal to (n'+1/2) half-wavelengths, compared to antiguide element widths of n half-wavelengths. The two integers n and n' may be, but are not necessarily, equal.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: October 27, 1992
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David G. Mehuys, Amos A. Hardy, David F. Welch, Robert G. Waarts, Donald R. Scifres
  • Patent number: 5033054
    Abstract: A laser having a phase conjugating reflector positioned with a resonant cavity of a laser configuration capable of multimode operation. The resonant cavity or other means associated with the laser configuration selects the preferred mode at threshold. The phase conjugating material builds up reflectivity as the light intensity is increased above threshold power levels to maintain the selected mode to high power levels. One embodiment has an external Talbot cavity with a first mirror in a Talbot plane of a multi-emitter laser array and with the phase conjugating material at a sub-Talbot plane. Another embodiment has an external GRIN lens cavity with a far field apertured stripe mirror for threshold mode selection. The phase conjugator is placed at a high light intensity position within the cavity such as adjacent to the stripe mirror or adjacent to the laser array. The laser source may be a linear laser diode array or a 2-D surface emitting laser array.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: July 16, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, Richard R. Craig, Robert G. Waarts
  • Patent number: 5003550
    Abstract: A monolithic integrated master oscillator power amplifier (MOPA) device including a single mode diode laser with distributed Bragg reflectors, an amplifier in tandem with the laser, lateral phase controllers and a detuned second order grating surface output coupler, all on a common substrate. The amplifier is a flared waveguide in one embodiment, and a branching network of single mode waveguides followed by an array of single mode gain waveguides in another embodiment. The diode laser is tunable by means of a separate tuning current applied to the rear Bragg reflector. Tuning the laser wavelength provides, in conjunction with the output coupler, a longitudinal steering of the output beam. The lateral phase controllers are an array of separately addressable electrodes that adjust the optical path length to compensate for phase variation in the amplifiers and also to provide lateral steering of the output beam.
    Type: Grant
    Filed: March 9, 1990
    Date of Patent: March 26, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David F. Welch, Robert G. Waarts, David G. Mehuys, Richard R. Craig
  • Patent number: 4995050
    Abstract: A diode laser external lens cavity configuration having a stripe mirror with two thin parallel stripes placed in front of the two lobes of the arrays for far field output pattern. The configuration includes a diode laser array or broad area laser, a lens system, such as a graded-index lens, disposed in front of the laser's front light emitting facet and the stripe mirror disposed in front of the lens system at the focal plane of the lens. The two stripes are parallel to one another on opposite sides of and equidistant from a vertical reference plane through the lens' center axis. One stripe is highly reflective, while the other is effectively only partially reflective having either a lower stripe reflectivity or shorter length than the first stripe. Other embodiments include a third stripe spaced from and collinear with the second stripe to form an etalon, and a grating in the cavity.
    Type: Grant
    Filed: November 17, 1989
    Date of Patent: February 19, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Robert G. Waarts, William Streifer, Donald R. Scifres
  • Patent number: 4972427
    Abstract: A diode laser of the type having an array of laser emitters in a Talbot cavity in which edge reflectors are added to enhance feedback to edgemost emitters. In one embodiment, a transparent slab with reflectively coated sides is present between the phase plane of the emitted light and the Talbot cavity reflector. The phase plne is defined by a lenticular array placed a focal length in front of the laser emitters. In another embodiment, the Talbot cavity reflector has an increased reflectivity toward its edges. In all embodiments the Talbot cavity reflector is preferably spaced a distance na.sup.2 /.lambda. from the phase plane, where n is a positive integer, a is separation between adjacent emitters and .lambda. is the wavelength of emitted light. An integrated embodiment has the array and cavity reflectors defined ina single semiconductor body divided into active and ransparent region. Side mirrors are etched into the semiconductor body.
    Type: Grant
    Filed: September 14, 1989
    Date of Patent: November 20, 1990
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: William Streifer, Robert G. Waarts, David F. Welch, Donald R. Scifres