Patents by Inventor Robert G. Younge

Robert G. Younge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9726476
    Abstract: An instrument system that includes an image capture device, an elongate body, an optical fiber and a controller is provided. The elongate body is operatively coupled to the image capture device. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber. The controller is operatively coupled to the optical fiber and adapted to receive a signal from the strain sensor and to determine a position or orientation of the image capture device based on the signal.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 8, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Publication number: 20170215978
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Application
    Filed: March 24, 2017
    Publication date: August 3, 2017
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Publication number: 20170119484
    Abstract: This disclosure covers various concepts to use for obtaining measurement of tension in catheter pullwires to improve controllability of a robotic surgical system.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 4, 2017
    Inventors: Neal A. Tanner, Matthew J. Roelle, Gregory J. Stahler, Robert G. Younge, Travis Covington
  • Publication number: 20170112368
    Abstract: Robotic, telerobotic, and/or telesurgical devices, systems, and methods take advantage of robotic structures and data to calculate changes in the focus of an image capture device in response to movement of the image capture device, a robotic end effector, or the like. As the size of an image of an object shown in the display device varies with changes in a separation distance between that object and the image capture device used to capture the image, a scale factor between a movement command input may be changed in response to moving an input device or a corresponding master/slave robotic movement command of the system. This may enhance the perceived correlation between the input commands and the robotic movements as they appear in the image presented to the system operator.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: John D. Stern, Robert G. Younge, David S. Gere, Gunter D. Niemeyer
  • Patent number: 9629682
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 25, 2017
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Publication number: 20170086929
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Application
    Filed: October 3, 2016
    Publication date: March 30, 2017
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark
  • Patent number: 9532841
    Abstract: Robotic, telerobotic, and/or telesurgical devices, systems, and methods take advantage of robotic structures and data to calculate changes in the focus of an image capture device in response to movement of the image capture device, a robotic end effector, or the like. As the size of an image of an object shown in the display device varies with changes in a separation distance between that object and the image capture device used to capture the image, a scale factor between a movement command input may be changed in response to moving an input device or a corresponding master/slave robotic movement command of the system. This may enhance the perceived correlation between the input commands and the robotic movements as they appear in the image presented to the system operator.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: January 3, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: John D. Stern, Robert G. Younge, David S. Gere, Gunter D. Niemeyer
  • Patent number: 9500472
    Abstract: An instrument system that includes a first optical fiber, a second optical fiber and a controller is provided. The first optical fiber is operatively coupled to an elongate body that is adapted to be placed inside a patient. The second optical fiber is operatively coupled to the patient, to an actuating element adapted to actuate the elongate body, or to a portion of an imaging system adapted to identify a location of the portion relative to the elongate body. The controller is operatively coupled to the first optical fiber and the second optical fiber and is adapted to receive a first signal from the strain sensor provided on the first optical fiber, receive a second signal from the strain sensor provided on the second optical fiber; and determine a position or orientation of the elongate body based on the first signal and based on the second signal.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: November 22, 2016
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 9500473
    Abstract: An instrument system that includes an optical fiber and a controller is provided. The optical fiber is coupled to an external structure of a patient and has a strain sensor provided thereon. The controller is operatively coupled to the optical fiber and adapted to receive a signal from the strain sensor and to determine a property of respiration of the patient based on the signal.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: November 22, 2016
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 9498601
    Abstract: This disclosure covers various concepts to use for obtaining measurement of tension in catheter pullwires to improve controllability of a robotic surgical system.
    Type: Grant
    Filed: March 15, 2014
    Date of Patent: November 22, 2016
    Assignee: HANSEN MEDICAL, INC.
    Inventors: Neal A. Tanner, Matthew J. Roelle, Gregory J. Stahler, Robert G. Younge, Travis Covington
  • Patent number: 9457168
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 4, 2016
    Assignee: HANSEN MEDICAL, INC.
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark
  • Patent number: 9441954
    Abstract: An instrument system that includes an elongate body in a geometric configuration, an optical fiber, and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber, wherein at least a portion of the optical fiber is in the geometric configuration. The controller is operatively coupled to the optical fiber and adapted to receive, from a source other than the optical fiber, information indicative of the geometric configuration, receive a signal from the strain sensor, and associate the signal with the geometric configuration.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: September 13, 2016
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 9404734
    Abstract: An instrument system that includes an elongate body, an optical fiber, a localization sensor and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber. The localization sensor is operatively coupled to the elongate body. The controller is operatively coupled to the optical fiber and to the localization sensor and is adapted to receive a first signal from the strain sensor, receive a second signal from the localization sensor, and determine a position or orientation of the elongate body based on the first signal and the second signal.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 2, 2016
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Publication number: 20160067009
    Abstract: An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Bhaskar S. RAMAMURTHY, Neal A. TANNER, Robert G. YOUNGE, Randall L. SCHLESINGER
  • Patent number: 9232984
    Abstract: Systems and methods for performing robotically-assisted surgical procedures on a patient enable an image display device to provide an operator with auxiliary information related to the surgical procedure, in addition to providing an image of the surgical site itself. The systems and methods allow an operator to selectively access and reference auxiliary information on the image display device during the performance of a surgical procedure.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: January 12, 2016
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Gary S. Guthart, Gunter D. Niemeyer, Robert G. Younge, J. Kenneth Salisbury, Thomas G. Cooper
  • Patent number: 9186046
    Abstract: Robotic medical instrument systems and associated methods utilizing an optical fiber sensors such as Bragg sensor optical fibers. In one configuration, an optical fiber is coupled to an elongate instrument body and includes a fiber core having one or more Bragg gratings. A controller is configured to initiate various actions in response thereto. For example, a controller may generate and display a graphical representation of the instrument body and depict one or more position and/or orientation variables thereof, or adjust motors of an instrument driver to reposition the catheter or another instrument. Optical fibers having Bragg gratings may also be utilized with other system components including a plurality of working instruments that are positioned within a sheath lumen, an instrument driver, localization sensors, and/or an image capture device, and may also be coupled to a patient's body or associated structure that stabilizes the body.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 17, 2015
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 9186047
    Abstract: An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: November 17, 2015
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bhaskar S. Ramamurthy, Neal A. Tanner, Robert G. Younge, Randall L. Schlesinger
  • Patent number: 9101397
    Abstract: Systems and methods for performing robotically-assisted surgical procedures on a patient enable an image display device to provide an operator with auxiliary information related to the surgical procedure, in addition to providing an image of the surgical site itself. The systems and methods allow an operator to selectively access and reference auxiliary information on the image display device during the performance of a surgical procedure.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: August 11, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Gary S. Guthart, David S. Mintz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Robert G. Younge
  • Publication number: 20150157412
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 11, 2015
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Patent number: 8974408
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 10, 2015
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer