Patents by Inventor Robert Graham Clark

Robert Graham Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8148715
    Abstract: This invention concerns a quantum device, suitable for quantum computing, based on dopant atoms located in a solid semiconductor or insulator substrate. In further aspects the device is scaled up. The invention also concerns methods of reading out from the devices, initializing them, using them to perform logic operations and making them.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: April 3, 2012
    Assignee: Quocor Pty. Ltd.
    Inventors: Lloyd Christopher Leonard Hollenberg, Andrew Steven Dzurak, Cameron Wellard, Alexander Rudolf Hamilton, David J. Reilly, Gerard J. Milburn, Robert Graham Clark
  • Publication number: 20110121895
    Abstract: This invention concerns an electronic device for the control and readout of the electron or hole spin of a single dopant in silicon. The device comprises a silicon substrate in which there are one or more ohmic contact regions. An insulating region on top of the substrate. First and second barrier gates spaced apart to isolate a small region of charges to form an island of a Single Electron Transistor (SET). A third gate over-lying both the first and second barrier gates, but insulated from them, the third gate being able to generate a gate-induced charge layer (GICL) in the ESR line substrate beneath it. A fourth gate in close proximity to a single dopant donor gate atom, the dopant atom being encapsulated in the substrate outside the region of the GICL but close enough to allow spin-dependent charge tunnelling between the dopant atom and the SET island under the control of gate potentials, mainly the fourth gate.
    Type: Application
    Filed: February 11, 2009
    Publication date: May 26, 2011
    Inventors: Andrea Morello, Andrew Dzurak, Hans-Gregor Huebl, Robert Graham Clark, Laurens Henry Willems Van Beveren, Lloyd Christopher Leonard Hollenberg, David Normal Jamieson, Christopher Escott
  • Patent number: 7911265
    Abstract: This invention concerns interfacing to electronic circuits or systems operating at low temperature or ultra-low temperature using complementary metal-oxide semiconductor (CMOS) technology. Low temperature in this case refers to cryogenic temperatures in particular, but not exclusively, to the 4.2 K region. Ultra-low temperatures here refers to the sub-1 K range, usually accessed using dilution refrigerator systems. The electronic circuits comprise a controller (for writing and manipulation), an observer (for readout and measurement) circuits, or both, fabricated from ultra-thin silicon-on-insulator (SOI) CMOS technology.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: March 22, 2011
    Assignee: Qucor Pty. Ltd.
    Inventors: Andrew Steven Dzurak, Sobhath Ramesh Ekanayake, Robert Graham Clark, Torsten Lehmann
  • Publication number: 20110049475
    Abstract: This invention concerns a quantum device, suitable for quantum computing, based on dopant atoms located in a solid semiconductor or insulator substrate. In further aspects the device is scaled up. The invention also concerns methods of reading out from the devices, initializing them, using them to perform logic operations and making them.
    Type: Application
    Filed: February 19, 2010
    Publication date: March 3, 2011
    Inventors: Lloyd Christopher Leonard Hollenberg, Andrew Steven Dzurak, Cameron Wellard, Alexander Rudolf Hamilton, David J. Reilly, Gerard J. Milburn, Robert Graham Clark
  • Patent number: 7755078
    Abstract: A silicon integrated circuit device comprising a near intrinsic silicon substrate in which there are one or more ohmic contact regions. An insulating layer lies above the substrate, and on top of the insulating layer is a lower layer of one or more aluminium gates. The surface of each of the lower gates is oxidised to insulate them from an upper aluminium gate that extends over the lower gates.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: July 13, 2010
    Assignee: Qucor Pty. Ltd.
    Inventors: Susan Angus, Andrew Steven Dzurak, Robert Graham Clark, Andrew Ferguson
  • Patent number: 7732804
    Abstract: Ionisation of one of a pair of dopant atoms in a substrate creates a double well potential, and a charge qubit is realised by the location of one or more electrons or holes within this potential. The dopant atoms may comprise phosphorous atoms, located in a silicon substrate. A solid state quantum computer may be formed using a plurality of pairs of dopant atoms, corresponding gate electrodes, and read-out devices comprising single electron transistors.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: June 8, 2010
    Assignee: Quocor Pty. Ltd.
    Inventors: Lloyd Christopher Leonard Hollenberg, Andrew Steven Dzurak, Cameron Wellard, Alexander Rudolf Hamilton, David J. Reilly, Gerard J. Milburn, Robert Graham Clark
  • Publication number: 20090309229
    Abstract: A silicon integrated circuit device comprising a near intrinsic silicon substrate in which there are one or more ohmic contact regions. An insulating layer lies above the substrate, and on top of the insulating layer is a lower layer of one or more aluminium gates. The surface of each of the lower gates is oxidised to insulate them from an upper aluminium gate that extends over the lower gates.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Inventors: Susan Angus, Andrew Steven Dzurak, Robert Graham Clark, Andrew Ferguson
  • Publication number: 20080297230
    Abstract: This invention concerns interfacing to electronic circuits or systems operating at low temperature or ultra-low temperature using complementary metal-oxide semiconductor (CMOS) technology. Low temperature in this case refers to cryogenic temperatures in particular, but not exclusively, to the 4.2 K region. Ultra-low temperatures here refers to the sub-1 K range, usually accessed using dilution refrigerator systems. The electronic circuits comprise a controller (for writing and manipulation), an observer (for readout and measurement) circuits, or both, fabricated from ultra-thin silicon-on-insulator (SOI) CMOS technology.
    Type: Application
    Filed: February 4, 2008
    Publication date: December 4, 2008
    Inventors: Andrew Steven Dzurak, Sobhath Ramesh Ekanayake, Robert Graham Clark, Torsten Lehmann
  • Patent number: 7176066
    Abstract: A silicon substrate is coated with one or more layers of resist. First and second circuit patterns are exposed in sequence, where the second pattern crosses the first pattern. The patterned resist layers are developed to open holes which extend down to the substrate only where the patterns cross over each other. These holes provide a mask suitable for implanting single phosphorous ions in the substrate, for a solid state quantum computer. Further development of the resist layers provides a mask for the deposition of nanoelectronic circuits, such as single electron transistors, aligned to the phosphorous ions.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: February 13, 2007
    Assignee: Unisearch Limited
    Inventors: Rolf Brenner, Tilo Marcus Buehler, Robert Graham Clark, Andrew Steven Dzurak, Alexander Rudolf Hamilton, Nancy Ellen Lumpkin, Rita Paytricia McKinnon
  • Patent number: 7097708
    Abstract: This invention concerns nanoscale products, such as electronic devices fabricated to nanometer accuracy. It also concerns atomic scale products. These products may have an array of electrically active dopant atoms in a silicon surface, or an encapsulated layer of electrically active donor atoms. In a further aspect the invention concerns a method of fabricating such products. The methods include forming a preselected array of donor atoms incorporated into silicon. Encapsulation by growing silicon over a doped surface, after desorbing the passivating hydrogen. Also, using an STM to view donor atoms on the silicon surface during fabrication of a nanoscale device, and measuring the electrical activity of the donor atoms during fabrication of a nanoscale device. Such products and processes are useful in the fabrication of a quantum computer, but could have many other uses.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Qucor Pty Ltd.
    Inventors: Robert Graham Clark, Neil Jonathan Curson, Toby Hallam, Lars Oberbeck, Steven Richard Schofield, Michelle Yvonne Simmons
  • Patent number: 7061008
    Abstract: Individual hydrogen atoms are desorbed from a hydrogen terminated layer on a silicon substrate, using an STM tip, to form a pattern of exposed regions. A single donor-bearing molecule (such as phosphorous atoms). The spins of the donor atoms may be used as qubits in a slid quantum computer.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: June 13, 2006
    Assignee: Qucor Pty Ltd
    Inventors: Robert Graham Clark, Andrew Steven Dzurak, Steven Richard Schofield, Michelle Yvonne Simmons, Jeremy Lloyd O'Brien
  • Patent number: 7002166
    Abstract: This invention concerns a method and system for single ion doping and machining by detecting the impact, penetration and stopping of single ions in a substrate. Such detection is essential for the successful implantation of a counted number of 31P ions into a semi-conductor substrate for construction of a Kane quantum computer. The invention particularly concerns the application of a potential across two electrodes on the surface of the substrate to create a field to separate and sweep out electron-hole pairs formed within the substrate. A detector is then used to detecting transient current in the electrodes, and so determine the arrival of a single ion in the substrate.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: February 21, 2006
    Assignee: Qucor Pty Ltd
    Inventors: David Norman Jamieson, Steven Prawer, Andrew Steven Dzurak, Robert Graham Clark, Changyi Yang
  • Publication number: 20040232353
    Abstract: This invention concerns a method and system for single ion doping and machining by detecting the impact, penetration and stopping of single ions in a substrate. Such detection is essential for the successful implantation of a counted number of 31P ions into a semi-conductor substrate for construction of a Kane quantum computer. The invention particularly concerns the application of a potential across two electrodes on the surface of the substrate to create a field to separate and sweep out electron-hole pairs formed within the substrate. A detector is then used to detecting transient current in the electrodes, and so determine the arrival of a single ion in the substrate.
    Type: Application
    Filed: June 22, 2004
    Publication date: November 25, 2004
    Inventors: David Norman Jamieson, Steven Prawer, Andrew Steven Dzurak, Robert Graham Clark, Changyi Yang
  • Publication number: 20040029050
    Abstract: A silicon substrate is coated with one or more layers of resist. First and second circuit patterns are exposed in sequence, where the second pattern crosses the first pattern. The patterned resist layers are developed to open holes which extend down to the substrate only where the patterns cross over each other. These holes provide a mask suitable for implanting single phosphorous ions in the substrate, for a solid state quantum computer. Further development of the resist layers provides a mask for the deposition of nanoelectronic circuits, such as single electron transistors, aligned to the phosphorous ions.
    Type: Application
    Filed: August 27, 2003
    Publication date: February 12, 2004
    Inventors: Rolf Brenner, Tilo Marcus Buehler, Robert Graham Clark, Andrew Steven Dzurak, Alexander Rudolf Hamilton, Nancy Ellen Lumpkin, Rita Paytricia McKinnon
  • Publication number: 20040023519
    Abstract: Individual hydrogen atoms are desorbed from a hydrogen terminated layer on a silicon substrate, using an STM tip, to form a pattern of exposed regions. A single donor-bearing molecule (such as phosphorous atoms). The spins of the donor atoms may be used as qubits in a slid quantum computer.
    Type: Application
    Filed: August 28, 2003
    Publication date: February 5, 2004
    Inventors: Robert Graham Clark, Andrew Steven Dzurak, Steven Richard Schofield, Michelle Yvonne Simmons, Jeremy Lloyd O'Brien