Patents by Inventor Robert Henry Hammerle

Robert Henry Hammerle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9810118
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: November 7, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren Sakarai Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 8263033
    Abstract: According to one aspect of the present invention, a palladium-containing oxidation catalyst is provided. In one embodiment, the palladium-containing oxidation catalyst includes a first zone having a first PGM catalyst loading with a platinum (Pt) to palladium (Pd) weight ratio of no greater than 10.0; and a second zone disposed next to the first zone. In another embodiment, the second PGM catalyst loading has a palladium (Pd) to platinum (Pt) weight ratio of no greater than 4.0.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 11, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Allen Dobson, Robert Henry Hammerle
  • Patent number: 8240132
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NO, conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 14, 2012
    Assignee: Ford Global Technologies, Inc.
    Inventors: Haren S. Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Publication number: 20110206584
    Abstract: According to one aspect of the present invention, a palladium-containing oxidation catalyst is provided. In one embodiment, the palladium-containing oxidation catalyst includes a first zone having a first PGM catalyst loading with a platinum (Pt) to palladium (Pd) weight ratio of no greater than 10.0; and a second zone disposed next to the first zone. In another embodiment, the second PGM catalyst loading has a palladium (Pd) to platinum (Pt) weight ratio of no greater than 4.0.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Douglas Allen Dobson, Robert Henry Hammerle
  • Publication number: 20110005200
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Application
    Filed: September 8, 2010
    Publication date: January 13, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Haren S. GANDHI, John Vito CAVATAIO, Robert Henry HAMMERLE, Yisun CHENG
  • Publication number: 20100209321
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 19, 2010
    Applicant: Ford Global Technologies, LLC
    Inventors: Haren S. Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 7674743
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: March 9, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren Sakarai Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 7640730
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: January 5, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren S. Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Publication number: 20090149318
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 11, 2009
    Applicant: Ford Global Technologies, LLC
    Inventors: Haren S. GANDHI, John Vito CAVATAIO, Robert Henry HAMMERLE, Yisun CHENG
  • Patent number: 7485273
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: February 3, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren S. Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 7332135
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: February 19, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren S Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 7320781
    Abstract: A method for controlling reductant injection into an exhaust stream upstream of a catalyst coupled to an internal combustion engine is disclosed. In the method, an ammonia sensor located downstream of the exhaust catalyst is used to determine ammonia concentration in the exhaust stream. The ammonia concentration is compared to an allowable threshold and an allowable fraction, i.e., a maximum limit on a fraction of ammonia in the exhaust stream compared with the ammonia supplied by the reductant injector. Additionally, based on a NOx sensor, it is determined whether NOx conversion of the catalyst has increased in response to an increase in reductant injection. If not, reductant injection quantity is reduced.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: January 22, 2008
    Inventors: Christine Kay Lambert, Karen Marie Adams, Robert Henry Hammerle
  • Patent number: 6928806
    Abstract: A system for effective NOx and particulate matter control in a diesel or other lean burn internal combustion engine is presented. The system includes a urea-based SCR catalyst having an oxidation catalyst coupled upstream of it and a particulate filter coupled downstream of the SCR catalyst. This system configuration results in improved NOx conversion due to fast SCR catalyst warm-up and higher operating temperatures. Additionally, placing the particulate filter last in this system configuration reduces tailpipe ammonia emissions as well as prevents any thermal damage to the SCR catalyst due to the particulate filter regeneration.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 16, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Paul Joseph Tennison, Paul M. Laing, Christine Kay Lambert, Robert Henry Hammerle, William Charles Ruona
  • Patent number: 6823663
    Abstract: A system and a method for effective NOx and particulate matter control in a diesel or other lean burn internal combustion engine is presented. The system includes a urea-based SCR catalyst having an oxidation catalyst coupled upstream of it and a particulate filter coupled downstream of the SCR catalyst. The particulate filter regeneration method teaches controlling operating conditions to bring the particulate filter temperature in the range where exothermic reaction between hydrocarbon and oxygen occurs. Once this is accomplished, extra hydrocarbons are injected into the exhaust gas entering the particulate filter where they combust and the resulting exotherm regenerates the filter. This method achieves effective particulate matter control while eliminating the risk of thermal damage to the upstream devices and minimizing regeneration fuel economy penalty.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 30, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Henry Hammerle, Christine Kay Lambert, Paul M. Laing, Paul Joseph Tennison, William Charles Ruona
  • Patent number: 6813882
    Abstract: A system and method for removing NOx from an emission control device is provided. The emission control device is coupled adjacent and downstream of an oxidation catalyst. The method includes adding a reductant to the exhaust gases flowing into the oxidation catalyst. The method further includes partially oxidizing the reductant in the oxidation catalyst to transition a remaining portion of the reductant into a vapor phase. Finally, the method includes oxidizing the remaining portion of the reductant in the emission control device to remove NOx from the device.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: November 9, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Scott Hepburn, Robert Henry Hammerle
  • Publication number: 20040098979
    Abstract: A system and a method for effective NOx and particulate matter control in a diesel or other lean burn internal combustion engine is presented. The system includes a urea-based SCR catalyst having an oxidation catalyst coupled upstream of it and a particulate filter coupled downstream of the SCR catalyst. The particulate filter regeneration method teaches controlling operating conditions to bring the particulate filter temperature in the range where exothermic reaction between hydrocarbon and oxygen occurs. Once this is accomplished, extra hydrocarbons are injected into the exhaust gas entering the particulate filter where they combust and the resulting exotherm regenerates the filter. This method achieves effective particulate matter control while eliminating the risk of thermal damage to the upstream devices and minimizing regeneration fuel economy penalty.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 27, 2004
    Inventors: Robert Henry Hammerle, Christine Kay Lambert, Paul M. Laing, Paul Joseph Tennison, William Charles Ruona
  • Publication number: 20040098973
    Abstract: A system for effective NOx and particulate matter control in a diesel or other lean burn internal combustion engine is presented. The system includes a urea-based SCR catalyst having an oxidation catalyst coupled upstream of it and a particulate filter coupled downstream of the SCR catalyst. This system configuration results in improved NOx conversion due to fast SCR catalyst warm-up and higher operating temperatures. Additionally, placing the particulate filter last in this system configuration reduces tailpipe ammonia emissions as well as prevents any thermal damage to the SCR catalyst due to the particulate filter regeneration.
    Type: Application
    Filed: November 21, 2002
    Publication date: May 27, 2004
    Inventors: Paul Joseph Tennison, Paul M. Laing, Christine Kay Lambert, Robert Henry Hammerle, William Charles Ruona
  • Publication number: 20040076565
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Inventors: Haren S. Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Publication number: 20030113242
    Abstract: An emission control device for an engine is provided. The device includes an oxidation catalyst receiving exhaust gases from the engine. The catalyst heats the exhaust gases when the exhaust gases are rich of stoichiometry. The device further includes a combined particulate filter and NOx trap adjacent and downstream of the catalyst for storing NOx and particulate matter in exhaust gases from the engine.
    Type: Application
    Filed: August 7, 2002
    Publication date: June 19, 2003
    Inventors: Jeffrey Scott Hepburn, Robert Henry Hammerle
  • Publication number: 20030113249
    Abstract: A system and method for removing SOx and particulate matter from an emission control device receiving exhaust gases from an engine is provided. The method includes adding a reductant to the exhaust gases to increase a temperature of the emission control device above a threshold temperature. The method further includes ceasing adding the reductant to the exhaust gases to remove particulate matter from the device. The method further includes adding additional reductant to the exhaust gases to remove SOx from the device.
    Type: Application
    Filed: August 7, 2002
    Publication date: June 19, 2003
    Inventors: Jeffrey Scott Hepburn, Robert Henry Hammerle